-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathdataset.py
56 lines (44 loc) · 1.96 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
"""
* FileName: dataset.py
* Author: Slatter
* Date: 2023/5/3 18:21
* Description:
"""
from torch.utils.data import random_split, DataLoader
from torchvision import transforms, datasets
import pytorch_lightning as pl
class MNISTLoader(pl.LightningDataModule):
def __init__(self, data_dir, bsz, workers):
super(MNISTLoader, self).__init__()
self.data_dir = data_dir
self.bsz = bsz
self.workers = workers
self.transform = transforms.Compose([
transforms.ToTensor(),
transforms.Lambda(lambda x: x * 2 - 1),
])
self.dims = (1, 28, 28)
def prepare_data(self):
datasets.MNIST(self.data_dir, train=True, download=True)
datasets.MNIST(self.data_dir, train=False, download=True)
def setup(self, stage: str):
if stage == 'fit' or stage is None:
mnist_full = datasets.MNIST(self.data_dir, train=True, transform=self.transform)
self.mnist_train, self.mnist_val = random_split(mnist_full, [55000, 5000])
if stage == 'test' or stage is None:
self.mnist_test = datasets.MNIST(self.data_dir, train=False, transform=self.transform)
def train_dataloader(self):
print(f'Train samples: {len(self.mnist_train)}')
return DataLoader(self.mnist_train, batch_size=self.bsz, shuffle=True, num_workers=self.workers)
def val_dataloader(self):
print(f'Valid samples: {len(self.mnist_val)}')
return DataLoader(self.mnist_val, batch_size=self.bsz, shuffle=False, num_workers=self.workers)
def test_dataloader(self):
print(f'Test samples: {len(self.mnist_test)}')
return DataLoader(self.mnist_test, batch_size=self.bsz, shuffle=False, num_workers=self.workers)
if __name__ == '__main__':
loader = MNISTLoader('../dataset/mnist', 128, 8)
loader.setup(None)
train_loader = loader.train_dataloader()
val_loader = loader.val_dataloader()
test_loader = loader.test_dataloader()