-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathstats.py
90 lines (70 loc) · 2.03 KB
/
stats.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
def mean(vals):
if vals:
return sum(vals, 0.0) / len(vals)
else:
return 0.0
def trim(vals, trim=0.25):
if trim > 0.0:
trim = float(trim)
size = len(vals)
size_diff = int(size * trim)
vals = vals[size_diff:-size_diff]
return vals
def median(vals):
if not vals:
return 0
copy = sorted(vals)
size = len(copy)
if size % 2 == 1:
return copy[(size - 1) / 2]
else:
return (copy[size / 2 - 1] + copy[size / 2]) / 2.0
def pow_diff(vals, power):
m = mean(vals)
return [(v - m) ** power for v in vals]
def variance(vals):
return mean(pow_diff(vals, 2))
def std_dev(vals):
return variance(vals) ** 0.5
def absolute_dev(vals, x):
return [abs(x - v) for v in vals]
def median_abs_dev(vals):
x = median(vals)
return median(absolute_dev(vals, x))
def rel_std_dev(vals):
val_mean = mean(vals)
if val_mean:
return std_dev(vals) / val_mean
else:
return 0.0
def skewness(vals):
s_dev = std_dev(vals)
if len(vals) > 1 and s_dev > 0:
return (sum(pow_diff(vals, 3)) /
float((len(vals) - 1) * (s_dev ** 3)))
else:
return 0.0
def kurtosis(vals):
s_dev = std_dev(vals)
if len(vals) > 1 and s_dev > 0:
return (sum(pow_diff(vals, 4)) /
float((len(vals) - 1) * (s_dev ** 4)))
else:
return 0.0
def dist_stats(vals):
trimmed_vals = trim(vals)
return {
'mean': mean(vals),
'mean_trimmed': mean(trimmed_vals),
'median': median(vals),
'median_abs_dev': median_abs_dev(vals),
'variance': variance(vals),
'std_dev': std_dev(vals),
'std_dev_trimmed': std_dev(trimmed_vals),
'rel_std_dev': rel_std_dev(vals),
'skewness': skewness(vals),
'skewness_trimmed': skewness(trimmed_vals),
'kurtosis': kurtosis(vals),
'kurtosis_trimmed': kurtosis(trimmed_vals),
'count': len(vals) # used to be called size; sample/population size
}