-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
365 lines (300 loc) · 11.5 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
import sys
from PyQt5.QtWidgets import QApplication, QMainWindow, QDialog
from PyQt5 import QtGui
import maingui
import authorWin
import tkinter as tk
from tkinter import filedialog
from PIL import Image
import cv2
import numpy as np
import matplotlib.pyplot as plt
# ------------------公共函数------------------
# 返回尺寸
def resize(w, h, w_box, h_box, pil_image):
f1 = 1.0 * w_box / w
f2 = 1.0 * h_box / h
factor = min([f1, f2])
width = int(w * factor)
height = int(h * factor)
return pil_image.resize((width, height), Image.ANTIALIAS)
# 显示图片
def showimg(img, isgray=False):
plt.axis("off")
if isgray == True:
plt.imshow(img, cmap='gray')
else:
plt.imshow(img)
plt.show()
def openauthorWin():
QdialogWindow.show()
# ------------------公共函数------------------end
# ------------------选项------------------
# 选择图片文件目录
def click_openImage():
open_image = tk.Tk
open_image().withdraw()
# 定义全局变量用来储存图片文件地址,以方便各个函数调用
global open_image_path
# 读取文件路径
open_image_path = filedialog.askopenfile()
# 打印目录,调试过程所用,用于排除bug
print(open_image_path.name)
# 调用QtGui.QPixmap方法,打开一个图片,存放在变量image中
image = QtGui.QPixmap(open_image_path.name)
# 在label里面,调用setPixmap命令,建立一个图像存放框,并将之前的图像png存放在这个框框里。
maingui.label.setPixmap(image)
# 防止盗为己用注释
# author:文东柳
# Email:[email protected]
# 2021/7/30
# 退出程序
def click_Exit():
sys.exit()
# ------------------选项------------------end
# ------------------操作------------------
def click_actionGray_histogram(): # 1
print('调试输出,证明程序已进入到此函数开始执行,code=1')
# src = cv2.imread(open_image_path.name)
# cv2.imshow("src", src)
#
# plt.hist(src.ravel(), 256)
# plt.show()
#
# cv2.waitKey(0)
# cv2.destroyAllWindows()
#
# img_l = img.convert('L')
# img_l.save('D:/test1.jpg')
# img_l.show()
# read_img = cv2.imread('D:/test1.jpg')
# print('code=1.0')
# img_l = cv2.imread('D:/test1.jpg')
#
# print('code=1.1')
# img_ravel = img_l.ravel()
#
# print('code=1.2')
# plt.hist(img_ravel, 256)
#
# print('code=1.3')
# plt.savefig('D:/test2.jpg')
# print('code=1.3')
# plt.show()
# img_l.show()
# 只要一导入标签2就闪退,问题无解,暂时把下面这句注释掉
# maingui.label_2.setPixmap('D:/test2.jpg')
#
# 开始直方图均衡化,使用equalizeHist函数,导入灰度处理后的图片
# 防止盗为己用注释
# author:文东柳
# Email:[email protected]
# 2021/7/30
# equ = cv2.equalizeHist(open_image_path.name)
# 将两张图片按照水平方式堆叠起来,这样看起来比较有对比
# res = np.hstack((src, equ))
# cv2.imshow('直方图均衡化', res)
img = Image.open(open_image_path.name)
print('即将进行灰度变化,code=1.0')
src = np.array(img.convert("L"))
print('灰度变化end,进行矩阵设置,code=1.1')
dest = np.zeros_like(src)
print('矩阵设置end,进行直方图,code=1.2')
src1_for_hist = np.array(src).reshape(1, -1).tolist()
plt.title("灰度直方图", fontsize='16')
plt.hist(src1_for_hist, bins=255, density=0)
plt.show()
print('进行直方图end,code=1.3')
src2_for_hist = np.array(dest).reshape(1, -1).tolist()
plt.title("灰度直方图(均衡化)", fontsize='16')
plt.hist(src2_for_hist, bins=255, density=0)
plt.show()
print('进行灰度直方图end,code=1.4')
plt.title("灰度图", fontsize='16')
plt.imshow(src, cmap='gray', vmin=0, vmax=255)
plt.axis('off')
plt.show()
print('进行灰度图end,code=1.5')
gray_times = []
for i in range(256):
gray_times.append(np.sum(src == i))
normalied_gray = gray_times / np.sum(gray_times)
rk2sk = []
for rk in range(256):
sk = 0
for k in range(rk):
sk += normalied_gray[k]
rk2sk.append(256 * sk)
width, height = src.shape
for i in range(width - 1):
for j in range(height):
dest[i][j] = rk2sk[src[i][j]]
plt.title("灰度图(均衡化)", fontsize='16')
plt.imshow(dest, cmap='gray', vmin=0, vmax=255)
plt.axis('off')
plt.show()
print('进行灰度图均衡化end,code=1.6')
def click_actionHistogram_equalization(): # 2灰度变化
print('调试输出,证明程序已进入到此函数开始执行,code=2')
# 灰度反相
im = Image.open(open_image_path.name)
im_l = im.convert('L')
im_l.show()
# im_arr = np.array(im_gray)
# im1 = 255 - im_arr
# 防止盗为己用注释
# author:文东柳
# Email:[email protected]
# 2021/7/30
# showimg(Image.fromarray(im1))
print('code=2.0')
img_gray = im_l.point(lambda i: 256 - i - 1)
plt.title("灰度反转", fontsize='16')
plt.imshow(img_gray, cmap='gray', vmin=0, vmax=255)
plt.axis('off')
plt.show()
print('code=2.1')
img_log = im_l.point(lambda i: 20 * 255 * np.log(1 + i / 255))
plt.title("对数变换", fontsize='16')
plt.imshow(img_log, cmap='gray', vmin=0, vmax=255)
plt.axis('off')
plt.show()
print('code=2.2')
imarray = np.array(im_l)
height, width = imarray.shape
for i in range(height):
for j in range(width):
aft = int(imarray[i, j] + 55)
if aft <= 255 and aft >= 0:
imarray[i, j] = aft
elif aft > 255:
imarray[i, j] = 255
else:
imarray[i, j] = 0
img_lin = Image.fromarray(imarray)
plt.title("线性变换", fontsize='16')
plt.imshow(img_lin, cmap='gray', vmin=0, vmax=255)
plt.axis('off')
plt.show()
print('code=2,end')
def click_actionGray_inversion(): # 3几何变换
print('调试输出,证明程序已进入到此函数开始执行,code=3')
img = Image.open(open_image_path.name)
# 获取图像的大小
print(img.size)
# 获取图像 width
print(img.size[0])
# 获取图像 height
print(img.size[1])
img_Wendongliu = img.resize((img.size[0] * 2, img.size[1] * 2), Image.ANTIALIAS) # 放大两倍
img.show()
img_Wendongliu.show()
print('code=3.1,end')
img_3 = img.resize((int(img.size[0] * 0.5), int(img.size[1] * 0.5)), Image.ANTIALIAS) # 缩小两倍
img_3.show()
print('code=3.2,end')
# mg = img.transpose(Image.ROTATE_90) # 将图片旋转90度
img_4wendongliu = img.transpose(Image.ROTATE_180) # 将图片旋转180度
# img = img.transpose(Image.ROTATE_270) # 将图片旋转270度
img_4wendongliu.show()
# img.save("img/rotateImg.png")
print('code=3.3,end')
img = cv2.imread(open_image_path.name)
rows, cols, _ = img.shape
M = np.float32([[1, 0, -100], [0, 1, 50]])
dst = cv2.warpAffine(img, M, (cols, rows))
cv2.imshow("2Wendongliu", dst)
print('code=3.4,end')
def click_actionLogarithmic_change(): # 4
print('调试输出,证明程序已进入到此函数开始执行,code=4')
def click_actionImage_plus_noise(): # 5
print('调试输出,证明程序已进入到此函数开始执行,code=5')
def click_actionSpatial_denoising(): # 6
print('调试输出,证明程序已进入到此函数开始执行,code=6')
# 拉普拉斯变换
laplace = np.array([[0, 1, 0],
[1, -4, 1],
[0, 1, 0]])
laplace2 = np.array([[1, 1, 1],
[1, -8, 1],
[1, 1, 1]])
sobel_filter_v = np.array([[-1, 0, 1],
[-2, 0, 2],
[-1, 0, 1], ])
sobel_filter_h = np.array([[-1, -2, -1],
[0, 0, 0],
[1, 2, 1], ])
def click_actionFrequency_domain_denoising(): # 7
print('调试输出,证明程序已进入到此函数开始执行,code=7')
def click_actionEdge_extraction(): # 8
print('调试输出,证明程序已进入到此函数开始执行,code=8')
# robert 算子
img = cv2.imread(open_image_path.name, cv2.IMREAD_GRAYSCALE)
r, c = img.shape
r_sunnzi = [[-1, -1], [1, 1]]
for x in range(r):
for y in range(c):
if (y + 2 <= c) and (x + 2 <= r):
imgChild = img[x:x + 2, y:y + 2]
list_robert = r_sunnzi * imgChild
img[x, y] = abs(list_robert.sum())
plt.title("robert算子", fontsize='16')
plt.imshow(img, cmap='gray', vmin=0, vmax=255)
plt.axis('off')
plt.show()
# sobel算子
img = cv2.cvtColor(np.array(open_image_path.name), cv2.COLOR_BGR2GRAY)
r, c = img.shape
new_image = np.zeros((r, c))
new_imageX = np.zeros(img.shape)
new_imageY = np.zeros(img.shape)
s_suanziX = np.array([[-1, 0, 1], [-2, 0, 2], [-1, 0, 1]]) # X方向
s_suanziY = np.array([[-1, -2, -1], [0, 0, 0], [1, 2, 1]])
for i in range(r - 2):
for j in range(c - 2):
new_imageX[i + 1, j + 1] = abs(np.sum(img[i:i + 3, j:j + 3] * s_suanziX))
new_imageY[i + 1, j + 1] = abs(np.sum(img[i:i + 3, j:j + 3] * s_suanziY))
new_image[i + 1, j + 1] = (new_imageX[i + 1, j + 1] * new_imageX[i + 1, j + 1] + new_imageY[i + 1, j + 1] *
new_imageY[i + 1, j + 1]) ** 0.5
img_1 = np.uint8(new_image)
plt.title("sobel算子", fontsize='16')
plt.imshow(img_1, cmap='gray', vmin=0, vmax=255)
plt.axis('off')
plt.show()
# Laplace算子
r, c = img.shape
new_image = np.zeros((r, c))
L_sunnzi = np.array([[0, -1, 0], [-1, 4, -1], [0, -1, 0]])
for i in range(r - 2):
for j in range(c - 2):
new_image[i + 1, j + 1] = abs(np.sum(img[i:i + 3, j:j + 3] * L_sunnzi))
img_2 = np.uint8(new_image)
plt.title("laplace算子", fontsize='16')
plt.imshow(img_2, cmap='gray', vmin=0, vmax=255)
plt.axis('off')
plt.show()
# ------------------操作------------------end
if __name__ == '__main__':
app = QApplication(sys.argv)
MainWindow = QMainWindow()
maingui = maingui.Ui_mainWindow()
maingui.setupUi(MainWindow)
QdialogWindow = QDialog()
authorWin = authorWin.Ui_Dialog()
authorWin.setupUi(QdialogWindow)
# 选项
maingui.actionOpenFile.triggered.connect(click_openImage) # 连接信号与槽
maingui.action12.triggered.connect(click_Exit) # 连接信号与槽Wendongliu
# 操作
maingui.actionGray_histogram.triggered.connect(click_actionGray_histogram) # 1
maingui.actionHistogram_equalization.triggered.connect(click_actionHistogram_equalization) # 2
maingui.actionGray_inversion.triggered.connect(click_actionGray_inversion) # 3
# maingui.actionLogarithmic_change.triggered.connect(click_actionLogarithmic_change) # 4
# maingui.actionImage_plus_noise.triggered.connect(click_actionImage_plus_noise) # 5
# maingui.actionSpatial_denoising.triggered.connect(click_actionSpatial_denoising) # 6
# maingui.actionFrequency_domain_denoising.triggered.connect(click_actionFrequency_domain_denoising) # 7
maingui.actionEdge_extraction.triggered.connect(click_actionEdge_extraction) # 8
# 关于
maingui.actionAbout.triggered.connect(openauthorWin)
MainWindow.show()
sys.exit(app.exec_())