-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy pathtrain_gcn.py
160 lines (128 loc) · 4.98 KB
/
train_gcn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
"""
create by Qiang Zhang
function: train gcn model
"""
import torch
import numpy as np
import os
from tqdm import tqdm
from datetime import datetime
import torch.nn.functional as F
import matplotlib.pyplot as plt
from model import GcnModel_n
from utils import Eval_det
from utils import gallery_gcn, gallery_gcn_det,_compute_iou,Eval
from data import Traindata,getTestdata
import torch.nn as nn
from config import log_root,data_root,neighbor_num
def train_one_epoch(Loader,model,optimizer,margin,N=4):
loss_all,all_pred,all_label = 0,[],[]
for i,item in enumerate(tqdm(Loader)):
probe1,probe,label,gallery = item
data = gallery_gcn(probe,gallery,num=N)
data,probe,label = torch.tensor(data).cuda(),\
torch.tensor(probe).cuda(),torch.tensor(label).cuda()
prob,gal,sim = model(data,probe)
#target = (torch.tensor(label) * 2 - 1).float().cuda()
target = (label.clone().detach() *2 - 1).float().cuda()
try:
loss = F.cosine_embedding_loss(prob, gal, target, margin)
except:
continue
optimizer.zero_grad()
loss.backward()
optimizer.step()
loss_all += loss.item()
return model
def test_one_epoch(epoch,dataset,model,logdir,best,N=4):
aps = []
accs = []
aps_p = []
accs_p = []
topk = [1, 5, 10]
recall_rates = np.load(os.path.join(data_root,'recall.npy'))
for i, item in enumerate(tqdm(dataset)):
probe, label, gallery_feat = item
probe = probe.squeeze()
gcn_data = gallery_gcn_det(probe, gallery_feat,num=N)
gcn_data0 = gcn_data[:, 0, :].squeeze()
sim0 = gcn_data0.dot(probe[0, :].squeeze()).ravel()
gcn_data = torch.tensor(gcn_data).cuda()
probe = torch.tensor(probe).cuda()
prob, gal, sim = model(gcn_data, probe)
pred = sim.cpu().data.numpy()
pred_p = pred + sim0
ap_p, acc_p = Eval(label, pred_p, topk)
aps_p.append(ap_p*recall_rates[i])
accs_p.append(acc_p)
map = np.mean(aps_p)
print(' mAP = {:.2%}'.format(map))
accs = np.mean(accs_p, axis=0)
for i, k in enumerate(topk):
print(' top-{:2d} = {:.2%}'.format(k, accs[i]))
#print('epoch:{} acc:{:.4f} map:{:.4f}'.format(epoch, accs[0], map))
if accs[0] > best:
best = accs[0]
if not os.path.exists(logdir):
os.mkdir(logdir)
np.save(os.path.join(logdir, 'log_{}'.format(epoch)), accs)
logfile = os.path.join(logdir, 'log_gcnnet{}.txt'.format(epoch))
writer = open(logfile, 'w')
writer.write("company number: " + str(N))
writer.write('\n')
writer.write('map:{:.4f}\n'.format(map))
ids = topk
for i, topi in enumerate(ids):
writer.write('top_{} acc:{:.4f}\n'.format(topi, accs[i]))
writer.close()
return best
def test_zero(epoch,dataset,logdir,N=4):
recall_rates = np.load(os.path.join(data_root,'recall.npy'))
aps = []
accs = []
topk = [1, 5, 10]
for i, item in enumerate(tqdm(dataset)):
probe, label, gallery_feat = item
probe = probe.squeeze()
gcn_data = gallery_gcn_det(probe, gallery_feat, num=N)
gcn_data = gcn_data[:, 0, :].squeeze()
sim = gcn_data.dot(probe[0,:].squeeze()).ravel()
pred = sim
ap, acc = Eval(label, pred, topk)
aps.append(ap*recall_rates[i])
accs.append(acc)
print(' mAP = {:.2%}'.format(np.mean(aps)))
accs = np.mean(accs, axis=0)
for i, k in enumerate(topk):
print(' top-{:2d} = {:.2%}'.format(k, accs[i]))
return 0
def main(learning_rate=0.1,margin=0.4,N=4):
model = GcnModel_n(neibor=N).cuda()
optimizer = torch.optim.SGD(filter(lambda p: p.requires_grad, model.parameters()), lr=learning_rate)
TrainLoader = Traindata(thresh=0.0,neibor=N)
TestLoader = getTestdata(neibor=N)
gcnnet_log = os.path.join(log_root,'gcnnet')
if not os.path.exists(gcnnet_log):
os.mkdir(gcnnet_log)
num = len(os.listdir(gcnnet_log))
nowTime = datetime.today().strftime("%y%m%d-%H%M%S")
logdir = os.path.join(log_root,'gcnnet/{}-{}-{}'.format(num,nowTime,N))
if not os.path.exists(logdir):
os.mkdir(logdir)
collect_path = os.path.join(log_root, 'collect_models')
if not os.path.exists(collect_path):
os.mkdir(collect_path)
best = 0
#test_zero(0, TestLoader, logdir, N=N)
for epoch in range(20):
if epoch==10:
learning_rate = learning_rate / 2
optimizer = torch.optim.SGD(filter(lambda p: p.requires_grad,
model.parameters()), lr=learning_rate)
print("epoch:{}".format(epoch))
model = train_one_epoch(TrainLoader,model,optimizer,margin,N=N)
torch.save(model.state_dict(),os.path.join(logdir,'model_{}.pkl'.format(epoch)))
torch.save(model.state_dict(),os.path.join(collect_path,'model_{}.pkl'.format(N)))
best = test_one_epoch(epoch,TestLoader,model,logdir,best,N=N)
if __name__ == '__main__':
main(N=neighbor_num)