forked from jidiai/Competition_Olympics-Running
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathevaluation.py
172 lines (150 loc) · 4.67 KB
/
evaluation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
import numpy as np
import random
from tqdm import tqdm
from env.chooseenv import make
from tabulate import tabulate
import argparse
from rl_trainer.algo import *
actions_map = {
0: [-100, -30],
1: [-100, -18],
2: [-100, -6],
3: [-100, 6],
4: [-100, 18],
5: [-100, 30],
6: [-40, -30],
7: [-40, -18],
8: [-40, -6],
9: [-40, 6],
10: [-40, 18],
11: [-40, 30],
12: [20, -30],
13: [20, -18],
14: [20, -6],
15: [20, 6],
16: [20, 18],
17: [20, 30],
18: [80, -30],
19: [80, -18],
20: [80, -6],
21: [80, 6],
22: [80, 18],
23: [80, 30],
24: [140, -30],
25: [140, -18],
26: [140, -6],
27: [140, 6],
28: [140, 18],
29: [140, 30],
30: [200, -30],
31: [200, -18],
32: [200, -6],
33: [200, 6],
34: [200, 18],
35: [200, 30],
} # dicretise action space
def get_join_actions(state, agent_list):
joint_actions = []
for agent_idx in range(len(agent_list)):
obs = state[agent_idx]["obs"].flatten()
actions_raw = agent_list[agent_idx].choose_action(obs)
if np.isscalar(actions_raw):
actions = actions_map[actions_raw]
joint_actions.append([[actions[0]], [actions[1]]])
else:
joint_actions.append(actions_raw)
return joint_actions
def run_game(env, algo_list, agent_list, episode, shuffle_map, map_num, render):
total_reward = np.zeros(2)
num_win = np.zeros(3) # agent 1 win, agent 2 win, draw
episode = int(episode)
for i in tqdm(range(1, int(episode) + 1)):
episode_reward = np.zeros(2)
state = env.reset(shuffle_map)
if render:
env.env_core.render()
step = 0
while True:
joint_action = get_join_actions(state, agent_list)
next_state, reward, done, _, info = env.step(joint_action)
reward = np.array(reward)
episode_reward += reward
if render:
env.env_core.render()
if done:
if reward[0] != reward[1]:
if reward[0] == 100:
num_win[0] += 1
elif reward[1] == 100:
num_win[1] += 1
else:
raise NotImplementedError
else:
num_win[2] += 1
break
state = next_state
step += 1
total_reward += episode_reward
total_reward /= episode
print("total reward: ", total_reward)
print("Result in map {} within {} episode:".format(map_num, episode))
header = ["Name", algo_list[0], algo_list[1]]
data = [
["score", np.round(total_reward[0], 2), np.round(total_reward[1], 2)],
["win", num_win[0], num_win[1]],
]
print(tabulate(data, headers=header, tablefmt="pretty"))
algo_name_list = ["ppo", "random"]
algo_list = [PPO, random_agent]
algo_map = dict(zip(algo_name_list, algo_list))
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--my_ai",
default="ppo",
help="[your algo name]/random",
choices=["ppo", "random"],
)
parser.add_argument("--my_ai_run_dir", default="")
parser.add_argument("--my_ai_run_episode", default=0)
parser.add_argument("--opponent", default="random", help="[your algo name]/random")
parser.add_argument("--opponent_run_dir", default="")
parser.add_argument("--opponent_run_episode", default=0)
parser.add_argument("--episode", default=20)
parser.add_argument(
"--map",
default="all",
)
parser.add_argument("--render", type=bool, default=False)
parser.add_argument("--seed", default=0)
args = parser.parse_args()
env_type = "olympics-running"
game = make(env_type, conf=None, seed=1)
if args.map != "all":
game.specify_a_map(int(args.map))
shuffle = False
else:
shuffle = True
algo_list = [args.opponent, args.my_ai] # your are controlling agent green
agent_list = []
if args.opponent != "random":
agent = algo_map[args.opponent]()
agent.load(args.opponent_run_dir, int(args.opponent_run_episode))
agent_list.append(agent)
else:
agent_list.append(random_agent())
if args.my_ai != "random":
agent = algo_map[args.my_ai]()
agent.load(args.my_ai_run_dir, int(args.my_ai_run_episode))
agent_list.append(agent)
else:
agent_list.append(random_agent())
run_game(
game,
algo_list=algo_list,
agent_list=agent_list,
episode=args.episode,
shuffle_map=shuffle,
map_num=args.map,
render=args.render,
)