-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathwordembedding.py
227 lines (182 loc) · 7.59 KB
/
wordembedding.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
import tensorflow as tf
import data_utils
import numpy as np
import collections
import random
import math
embedding_size = 128
num_sampled = 22
num_skips = 2
data_index = 0
batch_size=128
skip_window=1
num_movie_scripts = 4
# Step 3: Function to generate a training batch for the skip-gram model.
# !!!!!!!!!!!!!!!!!!!!!!!!!!!! Compare with tensorflows data
def generate_batch(batch_size, num_skips, skip_window):
global data_index
assert batch_size % num_skips == 0
assert num_skips <= 2 * skip_window
batch = np.ndarray(shape=(batch_size), dtype=np.int32)
labels = np.ndarray(shape=(batch_size, 1), dtype=np.int32)
span = 2 * skip_window + 1 # [ skip_window target skip_window ]
buffer = collections.deque(maxlen=span)
for _ in range(span):
buffer.append(data[data_index])
data_index = (data_index + 1) % len(data)
for i in range(batch_size // num_skips):
target = skip_window # target label at the center of the buffer
targets_to_avoid = [ skip_window ]
for j in range(num_skips):
while target in targets_to_avoid:
target = random.randint(0, span - 1)
targets_to_avoid.append(target)
batch[i * num_skips + j] = buffer[skip_window]
labels[i * num_skips + j, 0] = buffer[target]
buffer.append(data[data_index])
data_index = (data_index + 1) % len(data)
return batch, labels
def generateEncodedFile(filename, tokenized_array):
f = open(filename, 'w')
for sentence in tokenized_array:
encoded_sentence = ""
for word in sentence:
if word in dictionary:
encoded_word = dictionary[word]
else:
encoded_word = dictionary['UNK']
encoded_sentence += str(encoded_word) + " "
print sentence
encoded_sentence = encoded_sentence[:-1] # Remove final space
f.write(encoded_sentence + '\n') # Write sentence to file
f.close()
# Generate dictionary for dataset
tokenized_data = data_utils.read_data(num_movie_scripts)
print '-------- tokenized_data'
print tokenized_data[:10]
data, count, dictionary, reverse_dictionary = data_utils.build_dataset(tokenized_data, vocabulary_size)
print '-------- data'
print data
print '-------- count'
print count
print '-------- dictionary'
data_utils.print_dic(dictionary, 5)
print dictionary
print '-------- reverse_dictionary'
data_utils.print_dic(reverse_dictionary, 5)
print reverse_dictionary
print '-------- generateEncodedFile'
tokenized_sentences = data_utils.read_sentences(num_movie_scripts)
# Generate file
generateEncodedFile('X_train_for_3_scripts', tokenized_sentences)
"""
batch, labels = generate_batch(batch_size, num_skips, skip_window)
print '--------- batch'
print batch
print '--------- labels'
print labels
for i in range(8):
print(batch[i], '->', labels[i, 0])
print(reverse_dictionary[batch[i]], '->', reverse_dictionary[labels[i, 0]])
# Step 4: Build and train a skip-gram model.
batch_size = 128
embedding_size = 128 # Dimension of the embedding vector.
skip_window = 1 # How many words to consider left and right.
num_skips = 2 # How many times to reuse an input to generate a label.
# We pick a random validation set to sample nearest neighbors. Here we limit the
# validation samples to the words that have a low numeric ID, which by
# construction are also the most frequent.
valid_size = 16 # Random set of words to evaluate similarity on.
valid_window = 100 # Only pick dev samples in the head of the distribution.
valid_examples = np.random.choice(valid_window, valid_size, replace=False)
num_sampled = 50 # Number of negative examples to sample.
graph = tf.Graph()
with graph.as_default():
# Input data.
train_inputs = tf.placeholder(tf.int32, shape=[batch_size])
train_labels = tf.placeholder(tf.int32, shape=[batch_size, 1])
valid_dataset = tf.constant(valid_examples, dtype=tf.int32)
# Ops and variables pinned to the CPU because of missing GPU implementation
with tf.device('/cpu:0'):
# Look up embeddings for inputs.
embeddings = tf.Variable(tf.random_uniform([vocabulary_size, embedding_size], -1.0, 1.0))
embed = tf.nn.embedding_lookup(embeddings, train_inputs)
# Construct the variables for the NCE loss
nce_weights = tf.Variable(tf.truncated_normal([vocabulary_size, embedding_size],stddev=1.0 / math.sqrt(embedding_size)))
nce_biases = tf.Variable(tf.zeros([vocabulary_size]))
# Compute the average NCE loss for the batch.
# tf.nce_loss automatically draws a new sample of the negative labels each
# time we evaluate the loss.
loss = tf.reduce_mean( tf.nn.nce_loss(nce_weights, nce_biases, embed, train_labels, num_sampled, vocabulary_size))
# Construct the SGD optimizer using a learning rate of 1.0.
optimizer = tf.train.GradientDescentOptimizer(1.0).minimize(loss)
# Compute the cosine similarity between minibatch examples and all embeddings.
norm = tf.sqrt(tf.reduce_sum(tf.square(embeddings), 1, keep_dims=True))
normalized_embeddings = embeddings / norm
valid_embeddings = tf.nn.embedding_lookup( normalized_embeddings, valid_dataset)
similarity = tf.matmul(valid_embeddings, normalized_embeddings, transpose_b=True)
# Step 5: Begin training.
num_steps = 100001
with tf.Session(graph=graph) as session:
# We must initialize all variables before we use them.
tf.initialize_all_variables().run()
print("Initialized")
average_loss = 0
for step in xrange(num_steps):
batch_inputs, batch_labels = generate_batch(batch_size, num_skips, skip_window)
feed_dict = {train_inputs : batch_inputs, train_labels : batch_labels}
# We perform one update step by evaluating the optimizer op (including it
# in the list of returned values for session.run()
_, loss_val = session.run([optimizer, loss], feed_dict=feed_dict)
average_loss += loss_val
if step % 2000 == 0:
if step > 0:
average_loss /= 2000
# The average loss is an estimate of the loss over the last 2000 batches.
print("Average loss at step ", step, ": ", average_loss)
average_loss = 0
# Note that this is expensive (~20% slowdown if computed every 500 steps)
if step % 10000 == 0:
sim = similarity.eval()
for i in xrange(valid_size):
#print '---------------------------------'
#print 'trying to get reverse_dictionary[', valid_examples[i], ']'
valid_word = reverse_dictionary[valid_examples[i]]
top_k = 8 # number of nearest neighbors
nearest = (-sim[i, :]).argsort()[1:top_k+1]
log_str = "Nearest to %s:" % valid_word
for k in xrange(top_k):
close_word = reverse_dictionary[nearest[k]]
log_str = "%s %s," % (log_str, close_word)
print(log_str)
final_embeddings = normalized_embeddings.eval()
# Step 6: Visualize the embeddings.
def plot_with_labels(low_dim_embs, labels, filename='tsne.png'):
print " Checking: More labels than embedding"
assert low_dim_embs.shape[0] >= len(labels), "More labels than embeddings"
print 'ferdi'
plt.figure(figsize=(18, 18)) #in inches
for i, label in enumerate(labels):
x, y = low_dim_embs[i,:]
plt.scatter(x, y)
plt.annotate(label,xy=(x, y),xytext=(5, 2),textcoords='offset points',ha='right',va='bottom')
plt.savefig(filename)
try:
print "BEFORE SKLEARN"
from sklearn.manifold import TSNE
import matplotlib.pyplot as plt
print "AFTER"
tsne = TSNE(perplexity=30, n_components=2, init='pca', n_iter=5000)
plot_only = 500
low_dim_embs = tsne.fit_transform(final_embeddings[:plot_only,:])
print "BEFORE LABELS"
labels = [reverse_dictionary[i] for i in xrange(plot_only)]
print "START PLOT"
plot_with_labels(low_dim_embs, labels)
except ImportError:
print("Please install sklearn and matplotlib to visualize embeddings.")
"""
# Train model
"""for inputs, labels in generate_batch(...):
feed_dict = {training_inputs: inputs, training_labels: labels}
_, cur_loss = session.run([optimizer, loss], feed_dict=feed_dict)"""