-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathola_chatbot.py
196 lines (162 loc) · 7.34 KB
/
ola_chatbot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import math
import os
import random
import sys
import time
import numpy as np
from six.moves import xrange # pylint: disable=redefined-builtin
import tensorflow as tf
import preprocessing_data as prepros
# Use tensorflows translate seq2seq model
from tensorflow.models.rnn.translate import seq2seq_model
vocab_path = './vocabulary_for_movies.txt'
# Variables user can change
tf.app.flags.DEFINE_integer("batch_size", 64, "Batch size to use during training")
tf.app.flags.DEFINE_integer("size", 256, "Size of each model layer")
tf.app.flags.DEFINE_integer("num_layers", 2, "Number of layers in the model")
tf.app.flags.DEFINE_integer("vocab_size", 10000, "Vocabulary size")
tf.app.flags.DEFINE_boolean("use_lstm", False, "Use LSTM as cell")
tf.app.flags.DEFINE_boolean("decode", False, "Set to True for interactive decoding")
FLAGS = tf.app.flags.FLAGS
# Static variables
learning_rate = 0.5
learning_rate_decay = 0.99
train_dir = "./"
steps_per_checkpoint = 50
gradients_clip = 5.0
num_movie_scripts = 2318
# We use a number of buckets and pad to the closest one for efficiency.
# See seq2seq_model.Seq2SeqModel for details of how they work.
_buckets = [(5, 10), (10, 15), (20, 25), (40, 50)]
def read_data(source_path, target_path):
data_set = [[] for _ in _buckets]
with tf.gfile.GFile(source_path, mode="r") as source_file:
with tf.gfile.GFile(target_path, mode="r") as target_file:
source, target = source_file.readline(), target_file.readline()
counter = 0
while source and target:
counter += 1
if counter % 100000 == 0:
print(" reading data line %d" % counter)
sys.stdout.flush()
source_ids = [int(x) for x in source.split()]
target_ids = [int(x) for x in target.split()]
target_ids.append(prepros.EOS_ID)
for bucket_id, (source_size, target_size) in enumerate(_buckets):
if len(source_ids) < source_size and len(target_ids) < target_size:
data_set[bucket_id].append([source_ids, target_ids])
break
source, target = source_file.readline(), target_file.readline()
return data_set
def create_model(session, forward_only):
model = seq2seq_model.Seq2SeqModel(
FLAGS.vocab_size, FLAGS.vocab_size, _buckets,
FLAGS.size, FLAGS.num_layers, gradients_clip, FLAGS.batch_size,
learning_rate, learning_rate_decay, use_lstm = FLAGS.use_lstm,
forward_only=forward_only)
ckpt = tf.train.get_checkpoint_state(train_dir)
if ckpt and tf.gfile.Exists(ckpt.model_checkpoint_path):
print("Reading model parameters from %s" % ckpt.model_checkpoint_path)
model.saver.restore(session, ckpt.model_checkpoint_path)
else:
print("Created model with fresh parameters.")
prepros.make_files(num_movie_scripts,FLAGS.vocab_size)
session.run(tf.initialize_all_variables())
return model
def train():
en_train = './X_train.txt'
fr_train = './y_train.txt'
en_dev = './y_dev.txt'
fr_dev = './X_dev.txt'
with tf.Session() as sess:
# Create model.
print("Creating " + str(FLAGS.num_layers) + " layers of " + str(FLAGS.size))
model = create_model(sess, False)
# Read data into buckets and compute their sizes.
print ("Reading development and training data")
dev_set = read_data(en_dev, fr_dev)
train_set = read_data(en_train, fr_train)
train_bucket_sizes = [len(train_set[b]) for b in xrange(len(_buckets))]
train_total_size = float(sum(train_bucket_sizes))
train_buckets_scale = [sum(train_bucket_sizes[:i + 1]) / train_total_size for i in xrange(len(train_bucket_sizes))]
# This is the training loop.
step_time, loss = 0.0, 0.0
current_step = 0
previous_losses = []
while True:
ran_num = np.random.random_sample()
bucket_id = min([i for i in xrange(len(train_buckets_scale)) if train_buckets_scale[i] > ran_num])
# Get a batch and make a step.
start_time = time.time()
encoder_inputs, decoder_inputs, target_weights = model.get_batch(train_set, bucket_id)
_, step_loss, _ = model.step(sess, encoder_inputs, decoder_inputs, target_weights, bucket_id, False)
step_time += (time.time() - start_time) / steps_per_checkpoint
loss += step_loss / steps_per_checkpoint
current_step += 1
# Once in a while, we save checkpoint, print statistics, and run evals.
if current_step % steps_per_checkpoint == 0:
# Print statistics for the previous epoch.
if loss < 300:
perplexity = math.exp(loss)
else:
perplexity = float('inf')
print ("global step %d learning rate %.4f step-time %.2f perplexity "
"%.2f" % (model.global_step.eval(), model.learning_rate.eval(), step_time, perplexity))
# Decrease learning rate if no improvement was seen over last 3 times.
if len(previous_losses) > 2 and loss > max(previous_losses[-3:]):
sess.run(model.learning_rate_decay_op)
previous_losses.append(loss)
# Save checkpoint and zero timer and loss.
checkpoint_path = os.path.join(train_dir, "chatbot.ckpt")
model.saver.save(sess, checkpoint_path, global_step=model.global_step)
step_time, loss = 0.0, 0.0
# Run evals on development set and print their perplexity.
for bucket_id in xrange(len(_buckets)):
if len(dev_set[bucket_id]) == 0:
print(" eval: empty bucket %d" % (bucket_id))
continue
encoder_inputs, decoder_inputs, target_weights = model.get_batch(dev_set, bucket_id)
_, eval_loss, _ = model.step(sess, encoder_inputs, decoder_inputs, target_weights, bucket_id, True)
if eval_loss < 300:
eval_ppx = math.exp(eval_loss)
else:
eval_ppx = float('inf')
print(" eval: bucket %d perplexity %.2f" % (bucket_id, eval_ppx))
sys.stdout.flush()
def decode():
with tf.Session() as sess:
# Create model and load parameters.
model = create_model(sess, True)
model.batch_size = 1 # We decode one sentence at a time.
# Load vocabularies.
vocab, rev_vocab = prepros.initialize_vocabulary(vocab_path)
# Decode from standard input.
sys.stdout.write("Human >: ")
sys.stdout.flush()
sentence = sys.stdin.readline()
while sentence:
# Get token-ids for the input sentence.
token_ids = prepros.sentence_to_token_ids(tf.compat.as_bytes(sentence), vocab)
# Which bucket does it belong to?
# Find the smallest bucket that fits
bucket_id = min([b for b in xrange(len(_buckets)) if _buckets[b][0] > len(token_ids)])
encoder_inputs, decoder_inputs, target_weights = model.get_batch( {bucket_id: [(token_ids, [])]}, bucket_id )
_, _, output_logits = model.step(sess, encoder_inputs, decoder_inputs, target_weights, bucket_id, True)
outputs = [int(np.argmax(logit, axis=1)) for logit in output_logits]
# If there is an EOS symbol in outputs, cut them at that point.
if prepros.EOS_ID in outputs:
outputs = outputs[:outputs.index(prepros.EOS_ID)]
print("Ola >: " + " ".join([tf.compat.as_str(rev_vocab[output]) for output in outputs]))
print("Human >: ", end="")
sys.stdout.flush()
sentence = sys.stdin.readline()
def main(_):
if FLAGS.decode:
decode()
else:
train()
if __name__ == "__main__":
tf.app.run()