-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcalibrate_oxygen.py
781 lines (658 loc) · 31.1 KB
/
calibrate_oxygen.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
# -*- coding: utf-8 -*-3.
"""
Created on Wed Sep 13 16:11:18 2017
@author: siirias
"""
import sys
sys.path.insert(0,'D:\\svnfmi_merimallit\\qa\\nemo')
import datetime as dt
import calendar
import matplotlib as mp
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
from scipy.io import netcdf
from mpl_toolkits.basemap import Basemap, shiftgrid, cm
import ModelQATools as qa
import math
import argohelper as ah
from matplotlib import colors as mcolors
#runfile('D:/ArgoData/plot_full_data.py', wdir='D:/ArgoData')
draw_images=True
from_beginning=True # If wanting to rerun, just changing the methods of parir matching, put to false to save som time.
variables_plotted={'oxy':'Oxygen','tem':'Temperature','sal':'Salinity'} # Oxygen, Salinity, Temperature
#km/day range
day_in_km=3.
max_distance_km=60.
how_many_shown=6
#how_many_analyzed=12 #7 #deprecated
analyze_treshold=35.
argo_style='b.-'
ctd_style='r-'
"""
nc Variable Variable Units Description
metavar1 Cruise
metavar2 Station
metavar3 Type
longitude Longitude degrees_east
latitude Latitude degrees_north
metavar4 Bot. Depth m
metavar5 Secchi Depth m
date_time Decimal Gregorian Days of the station days since 2013-01-01 00:00:00 UTC Relative Gregorian Days with decimal part
var1 PRES db
var2 TEMP deg C
var3 PSAL psu
var4 DOXY ml/l
var5 PHOS umol/l
var6 TPHS umol/l
var7 SLCA umol/l
var8 NTRA umol/l
var9 NTRI umol/l
var10 AMON umol/l
var11 NTOT umol/l
var12 H2SX umol/l
var13 PHPH
var14 ALKY meq/l
var15 CPHL ug/l
var16 Year (station date)
"""
#Gotlands deep
#lon_min=17;lat_min=56;lon_max=22;lat_max=59;
lon_min=16.5;lat_min=55.5;lon_max=22.5;lat_max=59.5;
target_lat=57.32; target_lon=20.05; target_rad=1.8*60000000 #rad in km
def sort_by_best(best_hits):
for i in range(len(best_hits)):
for j in range(i,len(best_hits)):
tmp=best_hits[i]
if(best_hits[i][1]>best_hits[j][1]):
best_hits[i]=best_hits[j]
best_hits[j]=tmp
return best_hits
filetype='csv' # 'nc' tai 'csv'
if from_beginning:
if filetype=='nc':
invalid_val=-10000000000.000
file_n='d:/ArgoData/Siiriaetal2017/2013-2016_GotlDeep_data_from_helcom.nc'
fmk=netcdf.netcdf_file(file_n,'r')
press=-1.0*fmk.variables['var1'][:]
longitude=fmk.variables['longitude'][:]
latitude=fmk.variables['latitude'][:]
start_epoch=dt.datetime(2013,1,1,0,0)
start_secs=(start_epoch-dt.datetime.utcfromtimestamp(0.0)).total_seconds() #this should be amount of seconds to add to actual timestamps
#a=dt.datetime.fromtimestamp(times[0]*24.0*60.0*60.0)
times_s=fmk.variables['date_time'][:]
times=[]
for i in range(len(times_s)):
times.append(dt.datetime.utcfromtimestamp(times_s[i]*24.0*60.0*60.0+start_secs))
d=fmk.variables['var2'][:]
d=np.ma.masked_where(d==invalid_val,d)
else:
if filetype=='csv':
invalid_val=-10000000000.000
# file_n='./Siiriaetal2017/uudet_CTDt_16102017.csv'
#file_n='./Siiriaetal2017/0316544c.csv'
file_n=ah.ctd_data_file
fmk=pd.read_csv(file_n)
press=-1.0*fmk[u'PRES [db]'][:]
longitude=fmk[u'Longitude [degrees_east]'][:]
latitude=fmk[ u'Latitude [degrees_north]'][:]
temperature=fmk[u'TEMP [deg C]'][:]
salinity=fmk[u'PSAL [psu]'][:]
oxygen=fmk[u'DOXY [ml/l]'][:]
#Muutetaan saliniteetit g/kg:ksi
for point in range(salinity.shape[0]):
salinity[point]=ah.abs_suolaisuus(salinity[point],longitude[point],latitude[point])[0]
#purkka, koska happi eri muodossa:
for i in range(len(oxygen)):
if(type(oxygen[i])==str and oxygen[i][0]=='<'):
oxygen[i]=None
else:
oxygen[i]=float(oxygen[i])
times_s=fmk[u'yyyy-mm-ddThh:mm'][:]
times=[]
for i in range(len(times_s)):
times.append(dt.datetime.strptime(times_s[i],'%Y-%m-%dT%H:%M'))
ts=[]
for i in range(len(times)):
ts.append(calendar.timegm(times[i].timetuple()))
ctd_data=ah.split_csv_profiles(press,[longitude,latitude,temperature,salinity,ts,oxygen])
#tehdän se perus aikajana
timesx=ctd_data[:,0,5]
times=[]
for i in range(len(timesx)):
times.append(dt.datetime.utcfromtimestamp(timesx[i]))
# d=np.ma.masked_where(d==invalid_val,d)
#create mask, for values close to main point:
distance_mask=[False]*len(times_s)
for i in range(len(times_s)):
if(target_rad>ah.distance((target_lat,target_lon),(latitude[i],longitude[i]))):
distance_mask[i]=True
#Ja perus paikkajanatkin
pressure=ctd_data[:,:,0]
latitude=ctd_data[:,0,2]
longitude=ctd_data[:,0,1]
temperature=ctd_data[:,:,3]
salinity=ctd_data[:,:,4]
oxygen=ctd_data[:,:,6]
else:
print "wrong fieltype,",filetype," aborting!"
filetype='exitnow'
if(filetype!='exitnow'):
#
#create mask, for values close to main point:
"""
distance_mask=[False]*len(times_s)
for i in range(len(times_s)):
if(target_rad>distance((target_lat,target_lon),(latitude[i],longitude[i]))):
distance_mask[i]=True
"""
distance_mask=[False]*len(times)
for i in range(len(times)):
if(target_rad>ah.distance((target_lat,target_lon),(latitude[i],longitude[i]))):
distance_mask[i]=True
#then plot the argo routes
plot_legends=False
plot_routes=True
print "PLOTTING ARGO ROUTES!"
# files_to_plot=["6902014_prof.nc","6902019_prof.nc", \
# "6902020_prof.nc"]
found_floats=[]
# files_to_plot=["6902020_20161123123226453.nc",\
# "IM_6902019_20140821_20150805.nc", \
# "IM_6902014_20130814_20140821.nc"]
# files_to_plot=["noora_6902014_20160615160609287test.nc",
# "noora_6902019_20160614135812934test.nc",
# "noora_6902020_20170828072009212test.nc" ]
files_to_plot=ah.file_names_cleaned
# colors=["#ff0000","#00ff00","#0000ff"]
colors=["#5555ff"]*3
labels=[\
"6902014", "6902019", "6902020"]
start=mp.dates.datetime.datetime(1000,5,5)
end=mp.dates.datetime.datetime(3030,5,5)
argo_lats_all=np.array([])
argo_lons_all=np.array([])
argo_times_all=np.array([])
argo_depth_all=[]
argo_tem_all=[]
argo_sal_all=[]
argo_oxy_all=[]
argo_label_all=[]
argo_name_all=[]
for f,col,lab in zip(files_to_plot,colors,labels):
argo_lats=np.array([])
argo_lons=np.array([])
argo_times=np.array([])
argo_depth=[]
argo_tem=[]
argo_sal=[]
argo_oxy=[]
argo_label=[]
argo_name=[]
a=qa.PointData(f,1,start,end,"argonc")
print "File {} has {} profiles".format(f,len(a.obs['ape']['lat'][:]))
argo_lats=np.concatenate((argo_lats,a.obs['ape']['lat'][:]))
argo_lons=np.concatenate((argo_lons,a.obs['ape']['lon'][:]))
argo_times=np.concatenate((argo_times,mp.dates.num2date(a.obs['ape']['date'][:])))
tmp_val=a.obs['ape']['tem'][:]
for i in range(tmp_val.shape[0]):
argo_tem.append(tmp_val[i,:])
argo_label.append(lab) #THis could be in any pf these.
tmp_val=a.obs['ape']['sal'][:]
for i in range(tmp_val.shape[0]):
argo_sal.append(tmp_val[i,:])
tmp_val=a.obs['ape']['depth'][:]
for i in range(tmp_val.shape[0]):
argo_depth.append(tmp_val[i,:])
tmp_val=a.obs['ape']['oxy'][:]
for i in range(tmp_val.shape[0]):
argo_oxy.append(tmp_val[i,:])
if('platform_num' in a.obs['ape'].keys()):
tmp_val=a.obs['ape']['platform_num'][:]
for i in range(tmp_val.shape[0]):
argo_name.append(tmp_val[i])
else:
for i in range(tmp_val.shape[0]): #tmp_val here being the last parameter succesfully read
argo_name.append(int(lab))
argo_lats_all=np.concatenate((argo_lats_all,argo_lats))
argo_lons_all=np.concatenate((argo_lons_all,argo_lons))
argo_times_all=np.concatenate((argo_times_all,argo_times))
argo_name_all=np.concatenate((argo_name_all,argo_name))
argo_tem_all+=argo_tem
argo_sal_all+=argo_sal
argo_depth_all+=argo_depth
argo_oxy_all+=argo_oxy
argo_label_all+=argo_label
print "pituus {}".format(len(argo_lats_all))
argo_lats=argo_lons=argo_times=argo_depth=argo_tem=argo_sal=argo_oxy=argo_label=argo_name=None
#make the distance mask for argo floats
argo_distance_mask=[False]*len(argo_lats_all)
for i in range(len(argo_lats_all)):
if(target_rad>ah.distance((target_lat,target_lon),(argo_lats_all[i],argo_lons_all[i]))):
argo_distance_mask[i]=True
print "CTD measurements\t:",sum(distance_mask)
print "Argo measurements\t:",sum(argo_distance_mask)
for i in argo_name_all:
if not (i in found_floats):
found_floats.append(i)
#Lets find out the closest Argo measurement, for each CTD measurement:
best_hits=[]
next_best_hits=[]
#for CTD in range(len(times)):
for Argo in range(len(argo_lats_all)):
closest_index=0
closest_ctd=0
closest_dist=-1.
closest_time=-1.
closest_dist_km=-1.
next_best=[closest_index, closest_dist, closest_time,closest_dist_km, closest_ctd,argo_name_all[closest_index]]
# for Argo in range(len(argo_lats_all)):
if not np.isnan(argo_oxy_all[Argo][0]): #If this fails this is non-oxygen profile
for CTD in range(len(times)):
themask=np.isfinite(oxygen[CTD])
#if(True or (not np.isnan(oxygen[CTD][1])) and (not oxygen.mask[CTD][1])):
if(sum(themask)>1): #Meaning if there is more than one actual oxygen value in the profile.
Argo_name=argo_name_all[Argo]
dist_km=ah.distance((argo_lats_all[Argo],argo_lons_all[Argo]),(latitude[CTD],longitude[CTD]))
dist_days= abs(mp.dates.date2num(argo_times_all[Argo])-mp.dates.date2num(times[CTD]))
dist=dist_km+day_in_km*dist_days
if((closest_dist<0. or closest_dist>dist) ): #and dist_km<max_distance_km):
next_best=[closest_index, closest_dist, closest_time,closest_dist_km, closest_ctd,argo_name_all[closest_index]]
closest_dist=dist
closest_dist_km=dist_km
closest_time=dist_days
closest_index=Argo
closest_ctd=CTD
if(closest_dist<0.):
print "No hit found for {}! ".format(Argo)
else:
best_hits.append([0,0,0,0,0,0])
best_hits[-1][0]=closest_index
best_hits[-1][1]=closest_dist
best_hits[-1][2]=closest_time
best_hits[-1][3]=closest_dist_km
best_hits[-1][4]=closest_ctd
best_hits[-1][5]=argo_name_all[closest_index]
next_best_hits.append(next_best)
print ".",
#else:
#print "Non oxygen profile: {}".format(Argo)
# print "for CTD",CTD,"Argo",best_hits[CTD][0],"\t\td(km){:.2f} (d){:.0f}".format(best_hits[CTD][2],best_hits[CTD][3])
print "got from loading!"
#sort based on best value:
"""
for i in range(len(best_hits)):
for j in range(i,len(best_hits)):
tmp=best_hits[i]
if(best_hits[i][1]>best_hits[j][1]):
best_hits[i]=best_hits[j]
best_hits[j]=tmp
"""
best_hits=sort_by_best(best_hits)
#avg_km_diff=0.
#avg_t_diff=0.
#remove the ones which have identical CTD profiles in comparison:
#"""
best_hits_all=best_hits[:]
best_hits=[]
used_CTDs={}
for i in range(len(best_hits_all)):
if not (best_hits_all[i][4] in used_CTDs):
used_CTDs[best_hits_all[i][4]]=True
best_hits.append(best_hits_all[i])
#"""
#for i in range(min([how_many_analyzed,len(best_hits)])):
# print "for CTD",best_hits[i][4],"Argo",best_hits[i][0],"\t\td(km){:.2f} (d){:.1f} (tot){:.1f}".format(best_hits[i][3],best_hits[i][2],best_hits[i][1])
# avg_km_diff+=best_hits[i][3]
# avg_t_diff+=best_hits[i][2]
#avg_km_diff/=how_many_analyzed
#avg_t_diff/=how_many_analyzed
#for i in range(len(argo_name_all)):
# if(np.isnan(argo_oxy_all[i][0])):
# argo_name_all[i]=0 #Tehty, koska alkuperäisissä fileissä tuplana tiedot. parittomat tärkeämmät
#Let's gather the statistics of wanted pairs:
min_depth_okay=-50.0
how_many_to_skip=0
graph_step=10.0
total_fitness=0.0
#matched_Argos={}
selected_profs={}
pair_statistics=pd.DataFrame(columns=['float',
'number',
'a_lat',
'a_lon',
'c_lat',
'c_lon',
'diff_day',
'diff_km',
'diff_tot',
'a_num',
'c_num'])
tmp=pd.DataFrame([[pd.to_datetime(0),pd.to_datetime(0)]],columns=['a_time','c_time'])
tmp.drop(0) #cludge to empty the system, ensuring the dataformats are right.
pair_statistics=pair_statistics.join(tmp)
for float_no in found_floats:
found_hits=0
skipped=0
name_matches=0
print "FLOAT:",float_no
for No in range(len(best_hits)):
iargo=best_hits[No][0]
ictd=best_hits[No][4]
if(float_no == argo_name_all[iargo] and best_hits[No][1]<analyze_treshold and pressure[ictd].min()<min_depth_okay):
print "{}: Passed as {} < {}".format(float_no,best_hits[No][1],analyze_treshold)
name_matches+=1
#matched_Argos[iargo]=True
if((not np.isnan(argo_oxy_all[iargo][0])) and (not np.isnan(oxygen[ictd][0]))):
if(not skipped>=how_many_to_skip):
skipped+=1
else:
skipped=0
if float_no not in selected_profs.keys():
selected_profs[float_no]={}
selected_profs[float_no][found_hits]={'ctd':ictd, 'argo':iargo}
N=found_hits
found_hits+=1
fitness=ah.compare_profiles(pressure[ictd,:],temperature[ictd,:],argo_depth_all[iargo][:],argo_tem_all[iargo][:])
total_fitness+=fitness
print "\nMatch *{}*".format(N+1)
print "profile {} fitness {}, FLOAT:{}".format(No,fitness,argo_name_all[iargo])
print "Distance in km: {} \t Distance in days: {} \t Total: {}".format(best_hits[No][3],best_hits[No][2],best_hits[No][1])
print "Location (CTD) {},{}".format(latitude[ictd],longitude[ictd])
print "Location (Argo) {},{}".format(argo_lats_all[iargo],argo_lons_all[iargo])
print "Time (CTD) {}".format(times[ictd])
print "Time (Argo) {}".format(argo_times_all[iargo])
print "CTD {} ARGO {}\n\n".format(ictd,iargo)
pair_statistics=pair_statistics.append({'float':argo_name_all[iargo]},ignore_index=True)
idx=len(pair_statistics)-1
pair_statistics.loc[idx,'number']=N
pair_statistics.loc[idx,'a_lat']=argo_lats_all[iargo]
pair_statistics.loc[idx,'a_lon']=argo_lons_all[iargo]
pair_statistics.loc[idx,'c_lat']=latitude[ictd]
pair_statistics.loc[idx,'c_lon']=longitude[ictd]
pair_statistics.loc[idx,'a_time']=pd.to_datetime(str(argo_times_all[iargo]))
pair_statistics.loc[idx,'c_time']=pd.to_datetime(str(times[ictd]))
pair_statistics.loc[idx,'a_num']=iargo
pair_statistics.loc[idx,'c_num']=ictd
pair_statistics.loc[idx,'diff_day']=best_hits[No][2]
pair_statistics.loc[idx,'diff_km']=best_hits[No][3]
pair_statistics.loc[idx,'diff_tot']=best_hits[No][1]
else:
if float_no == argo_name_all[iargo]:
print "{}: Failed as {} !< {}. or {}<{}".format(float_no,best_hits[No][1],analyze_treshold, pressure[ictd].min(),min_depth_okay)
#Sort by argo times
pair_statistics=pair_statistics.sort_values(by='a_time')
#And then plot them:
figure_size=[12,12]
colors=['r','g','b']
for float_no in found_floats:
fig_float,(ax_t,ax_s,ax_o)=plt.subplots(3,1,figsize=figure_size)
plt.figure(fig_float.number)
plt.suptitle("FLOAT {}".format(int(float_no)))
N=0
for i,No in pair_statistics.iterrows():
iargo=No['a_num']
ictd=No['c_num']
if(No['float']==float_no and No['number']<how_many_shown): #number to plot the best hits
ictd=int(No['c_num'])
iargo=int(No['a_num'])
for vp in variables_plotted:
if(variables_plotted[vp]=='Oxygen'):
# plt.figure(fig_o.number)
themask=np.isfinite(oxygen[ictd])
plt.axes(ax_o)
plt.plot(oxygen[ictd,themask]+graph_step*N,pressure[ictd,themask],ctd_style,zorder=10)
plt.plot(argo_oxy_all[iargo][:]+graph_step*N,-1.0*argo_depth_all[iargo][:],argo_style)
if(variables_plotted[vp]=='Salinity'):
# plt.figure(fig_s.number)
plt.axes(ax_s)
plt.plot(salinity[ictd,:]+graph_step*N,pressure[ictd,:],ctd_style,zorder=10)
plt.plot(argo_sal_all[iargo][:]+graph_step*N,-1.0*argo_depth_all[iargo][:],argo_style)
td_direction=1.0
if(No['a_time']>No['c_time']):
td_direction=-1.0
plt.text(5+graph_step*N,-180,"{:.1f}\n{:.1f} d\n{:.1f} km".format(No['diff_tot'],td_direction*No['diff_day'],No['diff_km']))
plt.text(5+graph_step*N,-60,No['a_time'].strftime("%d-%m-%Y"),rotation=90)
if(variables_plotted[vp]=='Temperature'):
# plt.figure(fig_t.number)
plt.axes(ax_t)
plt.plot(temperature[ictd,:]+graph_step*N,pressure[ictd,:],ctd_style,zorder=10)
plt.plot(argo_tem_all[iargo][:]+graph_step*N,-1.0*argo_depth_all[iargo][:],argo_style)
plt.xlabel(variables_plotted[vp])
plt.ylabel('Depth')
N+=1
plt.savefig("{}_{}.png".format(int(float_no),'matches'))
plt.savefig("{}_{}.eps".format(int(float_no),'matches'))
#Draw the map locations
for float_id in found_floats:
plt.figure(figsize=[5,5])
plt.title("{}".format(float_id))
map = Basemap(llcrnrlon=17., llcrnrlat=55., urcrnrlon=23., urcrnrlat=60, resolution='i')
map.drawcoastlines()
colors=['#0000ff','#00ff00','#ff0000','#000000','#ff00ff','#00ffff','#ffff00','#aaaaff','#aaffaa','#ffaaaa','#aaaaaa','#ffaaff','#aaffff','#ffffaa']
colors=mcolors.cnames.keys()
lines=[]
for i in selected_profs[float_id]:
ictd=selected_profs[float_id][i]['ctd']
iargo=selected_profs[float_id][i]['argo']
ctd_x,ctd_y=map(longitude[ictd],latitude[ictd],[argo_lons_all[iargo],argo_lats_all[iargo]])
arg_x,arg_y=map(argo_lons_all[iargo],argo_lats_all[iargo])
map.plot([ctd_x,arg_x],[ctd_y,arg_y],marker='',color=colors[i],linestyle='-')
plt.legend(range(1,8))
for i in selected_profs[float_id]:
ictd=selected_profs[float_id][i]['ctd']
iargo=selected_profs[float_id][i]['argo']
ctd_x,ctd_y=map(longitude[ictd],latitude[ictd],[argo_lons_all[iargo],argo_lats_all[iargo]])
arg_x,arg_y=map(argo_lons_all[iargo],argo_lats_all[iargo])
map.plot(arg_x,arg_y,marker='.',color=colors[i])
map.plot(ctd_x,ctd_y,marker='*',color=colors[i])
plt.show()
plt.savefig("{}_{}.png".format(int(float_id),"locations"))
#print "With magic number {}(km/day), \taverage fitness: {:.2f} \tavg km diff {:.1f} \tavg d diff {:.2f}".format(day_in_km,total_fitness/how_many_analyzed,avg_km_diff, avg_t_diff)
print "With magic number {}(km/day)".format(day_in_km)
print "Estimating the differences between argo and CTD"
shft=5.0
tot_count=0
colors=['r','g','b']
float_no=0
fig_o,ax_o=plt.subplots(figsize=figure_size)
ax_o.grid(b=True,which='both')
ax_o.set_xticks(np.arange(shft*len(found_floats)))
plt.title("Oxygen differences")
fig_t,ax_t=plt.subplots(figsize=figure_size)
ax_t.grid(b=True,which='both')
ax_t.set_xticks(np.arange(shft*len(found_floats)))
plt.title("Temperature differenses")
fig_s,ax_s=plt.subplots(figsize=figure_size)
ax_s.grid(b=True,which='both')
ax_s.set_xticks(np.arange(shft*len(found_floats)))
plt.title("Salinity differenses")
for float_id in found_floats:
#average_plots[float_id]=1
for i in selected_profs[float_id]:
ictd=selected_profs[float_id][i]['ctd']
iargo=selected_profs[float_id][i]['argo']
o,d,orig_o=ah.difference_profile(pressure[ictd],oxygen[ictd],argo_depth_all[iargo],argo_oxy_all[iargo])
plt.figure(fig_o.number)
plt.plot(o+shft*tot_count,-1.0*d,'.-',color=colors[float_no])
t,d,orig_t=ah.difference_profile(pressure[ictd],temperature[ictd],argo_depth_all[iargo],argo_tem_all[iargo])
plt.figure(fig_t.number)
plt.plot(t+shft*tot_count,-1.0*d,'.-',color=colors[float_no])
s,d,orig_s=ah.difference_profile(pressure[ictd],salinity[ictd],argo_depth_all[iargo],argo_sal_all[iargo])
plt.figure(fig_s.number)
plt.plot(s+shft*tot_count,-1.0*d,'.-',color=colors[float_no])
tot_count+=1
float_no+=1
plt.figure(fig_o.number)
plt.savefig("{}_diff.png".format(variables_plotted['oxy']))
plt.savefig("{}_diff.eps".format(variables_plotted['oxy']))
plt.figure(fig_t.number)
plt.savefig("{}_diff.png".format(variables_plotted['tem']))
plt.savefig("{}_diff.eps".format(variables_plotted['tem']))
plt.figure(fig_s.number)
plt.savefig("{}_diff.png".format(variables_plotted['sal']))
plt.savefig("{}_diff.eps".format(variables_plotted['sal']))
last_surf=30.0
first_deep=80.0
last_deep=150.0
first_mixed=30.0
last_mixed=80.0
#Plot the scatter Oxygen vs d-oxygen
fig,ax=plt.subplots()
float_no=0
for float_id in found_floats:
deep_points_sum=0.0
deep_points=0
surf_points_sum=0.0
surf_points=0
for prof in selected_profs[float_id]:
ictd=selected_profs[float_id][prof]['ctd']
iargo=selected_profs[float_id][prof]['argo']
o,d,orig_o=ah.difference_profile(pressure[ictd],oxygen[ictd],argo_depth_all[iargo],argo_oxy_all[iargo])
for i in range(len(d)):
if(i==0 and prof==selected_profs[float_id][0]):
my_label=float_id
print "I'm a LABEL!!!"
else:
my_label=None
if(d[i]>last_mixed or d[i]<first_mixed):
plt.plot(orig_o[i],o[i],'.',color=colors[float_no],label=my_label)
float_no+=1
ax.grid(b=True,which='both')
plt.legend()
plt.savefig("scatter_o_vs_do.png")
Analysis=pd.DataFrame(columns=['o_top','o_bot','s_top','s_bot','t_top','t_bot', \
'Do_top','Do_bot','Ds_top','Ds_bot','Dt_top','Dt_bot'],index=[])
#count the actual differences
for float_id in found_floats:
deep_points_sum_o=0.0
deep_points_sum_o_abs=0.0
deep_points_o=0
surf_points_sum_o=0.0
surf_points_sum_o_abs=0.0
surf_points_o=0
deep_points_sum_t=0.0
deep_points_sum_t_abs=0.0
deep_points_t=0
surf_points_sum_t=0.0
surf_points_sum_t_abs=0.0
surf_points_t=0
deep_points_sum_s=0.0
deep_points_sum_s_abs=0.0
deep_points_s=0
surf_points_sum_s=0.0
surf_points_sum_s_abs=0.0
surf_points_s=0
for prof in selected_profs[float_id]:
ictd=selected_profs[float_id][prof]['ctd']
iargo=selected_profs[float_id][prof]['argo']
o,do,orig_o=ah.difference_profile(pressure[ictd],oxygen[ictd],argo_depth_all[iargo],argo_oxy_all[iargo])
t,dt,orig_t=ah.difference_profile(pressure[ictd],temperature[ictd],argo_depth_all[iargo],argo_tem_all[iargo])
s,ds,orig_s=ah.difference_profile(pressure[ictd],salinity[ictd],argo_depth_all[iargo],argo_sal_all[iargo])
for i in range(len(do)):
if(do[i]<=last_surf):
surf_points_sum_o+=o[i]
surf_points_sum_o_abs+=abs(o[i])
surf_points_o+=1
if(do[i]>=first_deep and do[i]<=last_deep):
deep_points_sum_o+=o[i]
deep_points_sum_o_abs+=abs(o[i])
deep_points_o+=1
for i in range(len(dt)):
if(dt[i]<=last_surf):
surf_points_sum_t+=t[i]
surf_points_sum_t_abs+=abs(t[i])
surf_points_t+=1
if(dt[i]>=first_deep and dt[i]<=last_deep):
deep_points_sum_t+=t[i]
deep_points_sum_t_abs+=abs(t[i])
deep_points_t+=1
for i in range(len(ds)):
if(ds[i]<=last_surf):
surf_points_sum_s+=s[i]
surf_points_sum_s_abs+=abs(s[i])
surf_points_s+=1
if(ds[i]>=first_deep and ds[i]<=last_deep):
deep_points_sum_s+=s[i]
deep_points_sum_s_abs+=abs(s[i])
deep_points_s+=1
Analysis.loc[float_id,['o_top','o_bot']]=[surf_points_sum_o/surf_points_o,deep_points_sum_o/deep_points_o]
Analysis.loc[float_id,['s_top','s_bot']]=[surf_points_sum_s/surf_points_s,deep_points_sum_s/deep_points_s]
Analysis.loc[float_id,['t_top','t_bot']]=[surf_points_sum_t/surf_points_t,deep_points_sum_t/deep_points_t]
Analysis.loc[float_id,['Do_top','Do_bot']]=[surf_points_sum_o_abs/surf_points_o,deep_points_sum_o_abs/deep_points_o]
Analysis.loc[float_id,['Ds_top','Ds_bot']]=[surf_points_sum_s_abs/surf_points_s,deep_points_sum_s_abs/deep_points_s]
Analysis.loc[float_id,['Dt_top','Dt_bot']]=[surf_points_sum_t_abs/surf_points_t,deep_points_sum_t_abs/deep_points_t]
print "\nFor float {}:".format(int(float_id))
print "Surface bias (oxyg): {}".format(surf_points_sum_o/surf_points_o)
print "Surface bias (temperature): {}".format(surf_points_sum_t/surf_points_t)
print "Surface bias (salinity): {}\n".format(surf_points_sum_s/surf_points_s)
print "bottom bias (oxyg): {}".format(deep_points_sum_o/deep_points_o)
print "bottom bias (temperature): {}".format(deep_points_sum_t/deep_points_t)
print "bottom bias (salinity): {}".format(deep_points_sum_s/deep_points_s)
print "Average difference: Surface (oxyg): {}".format(surf_points_sum_o_abs/surf_points_o)
print "Average difference: Surface (temp): {}".format(surf_points_sum_t_abs/surf_points_t)
print "Average difference: Surface (sali): {}".format(surf_points_sum_s_abs/surf_points_s)
print "Average difference: Deep (oxyg): {}".format(deep_points_sum_o_abs/surf_points_o)
print "Average difference: Deep (temp): {}".format(deep_points_sum_t_abs/surf_points_t)
print "Average difference: Deep (sali): {}".format(deep_points_sum_s_abs/surf_points_s)
print "\n\nSurface defined as over {} m.".format(last_surf)
print "\n\nbottom defined as under {} m and over {}m.".format(first_deep,last_deep)
print Analysis[['o_top','s_top','t_top','o_bot','s_bot','t_bot']].to_latex(float_format=lambda x: '{:.2f}'.format(x))
print Analysis[['Do_top','Ds_top','Dt_top','Do_bot','Ds_bot','Dt_bot']].to_latex(float_format=lambda x: '{:.2f}'.format(x))
print "extra analysis"
for i in found_floats:
print "Float: {}".format(i)
dat=pair_statistics[pair_statistics['float']==i]
print "distance max:{:2.3} min:{:.3} avg:{:.3}".format(np.max(dat['diff_km']),np.min(dat['diff_km']),np.average(dat['diff_km']))
print "time max:{:.3} min:{:.3} avg:{:.3}".format(np.max(dat['diff_day']),np.min(dat['diff_day']),np.average(dat['diff_day']))
print "total max:{:.4} min:{:.3} avg:{:.3}".format(np.max(dat['diff_tot']),np.min(dat['diff_tot']),np.average(dat['diff_tot']))
print
plt.figure()
for i in range(len(times)):
col='b.'
zorder=0
themask=np.isfinite(oxygen[i])
if(sum(themask)>1):
col='ro'
zorder=1
plt.plot(longitude[i],latitude[i],col,markerfacecolor='None',zorder=zorder)
plt.plot(argo_lons_all,argo_lats_all,'g',zorder=2)
plt.figure()
for i in range(len(times)):
col='b.'
zorder=0
themask=np.isfinite(oxygen[i])
if(sum(themask)>1):
col='ro'
zorder=1
plt.plot(times[i],latitude[i],col,markerfacecolor='None',zorder=zorder)
plt.figure()
okprofs=0
for i in range(len(times)):
col='b.'
themask=np.isfinite(oxygen[i])
if(sum(themask)>1):
okprofs+=1
plt.plot(oxygen[i][themask]+i,pressure[i][themask],'-')
#few extra numbers:
bh=np.array(best_hits)
for i in found_floats:
print "Float: {} has {} unique hits".format(i,sum(bh[:,5]==i))
num=0
BY15=0
Dr=[]
for j in bh:
if j[5]==i:
num+=1
print "{}\ttot: {:4.2f}\tdist: {:4.2f}\ttime: {:4.2f}\tlat,lon: {:4.2f}-{:4.2f}".format(num,j[1],j[3],j[2],latitude[int(j[4])],longitude[int(j[4])]),
if ah.distance([target_lat,target_lon],[latitude[int(j[4])],longitude[int(j[4])]])<10.0:
print "*",
BY15+=1
Dr.append(j[1])
print
#print ah.distance([target_lat,target_lon],[latitude[int(j[4])],longitude[int(j[4])]])
print "\tBY:{}.\t\tDr(6):{:4.2f}\tDr(9):{:4.2f} \tDr(12):{:4.2f}".format(BY15,np.mean(Dr[:6]),np.mean(Dr[:9]),np.mean(Dr[:12]))
print
for arg in found_floats:
print "{} Analyzed profiles: {}".format(arg,len(selected_profs[arg]))
print "FINISHED!"