-
Notifications
You must be signed in to change notification settings - Fork 4
/
NN_Matrices.m
556 lines (476 loc) · 17.3 KB
/
NN_Matrices.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
% File: NN_Matrices.m
% Description: Matlab code of Neural Networks Results for Control System of five ultrasonic sensors
% Environment: Matlab
%
% MIT License
% Copyright (c) 2017 Valentyn N Sichkar
% github.com/sichkar-valentyn
%
% Reference to:
% Valentyn N Sichkar. Matlab implementation of Neural Networks Results for Control System of five Ultrasonic sensors // GitHub platform. DOI: 10.5281/zenodo.1317896
close all;
%Creating an Input vector
Inputs = [10 10 10 10 10 1];
% -------------- Separate ----------------
%Creating a matrix of weights for the Layer #1
Weights_First_Layer_Separate = [0.11 -0.05 0 0 0 0 0 0 0 0 0.5 -0.11 0 0 0 0 0 0 0 0
0 0 0.11 -0.05 0 0 0 0 0 0 0 0 0.5 -0.11 0 0 0 0 0 0
0 0 0 0 0.11 -0.05 0 0 0 0 0 0 0 0 0.5 -0.11 0 0 0 0
0 0 0 0 0 0 0.11 -0.05 0 0 0 0 0 0 0 0 0.5 -0.11 0 0
0 0 0 0 0 0 0 0 0.11 -0.05 0 0 0 0 0 0 0 0 0.5 -0.11
-1 1.05 -1 1.05 -1 1.05 -1 1.05 -1 1.05 -1 1.05 -1 1.05 -1 1.05 -1 1.05 -1 1.05];
%Getting the outputs of the Layer #1
A_Separate = Inputs * Weights_First_Layer_Separate;
%Adding to the outputs of the Layer #1 the second bias
B_Separate = [A_Separate 1];
%Activating the neurons in the Layer #1
for i = 1:1:21
if B_Separate(i)<0; B_Separate(i)=0;
end
if B_Separate(i)>0; B_Separate(i)=1;
end
end
%Creating a matrix of weights for the inputs of the Hidden Layer
Weights_Hidden_Layer_Separate = [1 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 1
-1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5];
%Getting the outputs of the Hidden Layer
D_Separate = B_Separate * Weights_Hidden_Layer_Separate;
%Adding to the outputs of the Hidden Layer the third bias
H_Separate = [D_Separate 1];
%Activating the neurons in the Hidden Layer
for i = 1:1:11
if H_Separate(i)<0; H_Separate(i)=0;
end
if H_Separate(i)>0; H_Separate(i)=1;
end
end
%Creating a matrix of weights for the Output Layer
Weights_Output_Layer_Separate = [1 0
1 0
1 0
1 0
1 0
0 1
0 1
0 1
0 1
0 1
-0.5 -0.5];
%Getting the outputs of the Hidden Layer
Result_Separate = H_Separate * Weights_Output_Layer_Separate;
%Activating the neurons in the Output Layer
Final_Result_Separate = Result_Separate;
for i = 1:1:2
if Result_Separate(i)<0; Final_Result_Separate(i)=0;
end
if Result_Separate(i)>0; Final_Result_Separate(i)=1;
end
end
% -------------- Pairs ----------------
%Creating a matrix of weights for the Layer #1
Weights_First_Layer_1_Pairs = [0.0476 -0.0285 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.1 -0.0666 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0.0476 -0.0285 0.0476 -0.0285 0 0 0 0 0 0 0 0 0 0 0 0 0.1 -0.0666 0.1 -0.0666 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0.0476 -0.0285 0.0476 -0.0285 0 0 0 0 0 0 0 0 0 0 0 0 0.1 -0.0666 0.1 -0.0666 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0.0476 -0.0285 0.0476 -0.0285 0 0 0 0 0 0 0 0 0 0 0 0 0.1 -0.0666 0.1 -0.0666 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0476 -0.0285 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.1 -0.0666
-0.96 1.02 -0.96 1.02 -0.96 1.02 -0.96 1.02 -0.96 1.02 -0.96 1.02 -0.96 1.02 -0.96 1.02 -0.91 1.06 -0.91 1.06 -0.91 1.06 -0.91 1.06 -0.91 1.06 -0.91 1.06 -0.91 1.06 -0.91 1.06];
%Getting the outputs of the Layer #1
A_Pairs = Inputs * Weights_First_Layer_1_Pairs;
%Adding to the outputs of the Layer #1 the second bias
B_Pairs = [A_Pairs 1];
%Activating the neurons in the Layer #1
for i = 1:1:33
if B_Pairs(i)<0; B_Pairs(i)=0;
end
if B_Pairs(i)>0; B_Pairs(i)=1;
end
end
%Creating a matrix of weights for the inputs of the Hidden Layer #1
Weights_Hidden_Layer_Pairs = [1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
-1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5];
%Getting the outputs of the Hidden Layer #1
D_Pairs = B_Pairs * Weights_Hidden_Layer_Pairs;
%Adding to the outputs of the Hidden Layer #1 the third bias
H_Pairs = [D_Pairs 1];
%Activating the neurons in the Hidden Layer #1
for i = 1:1:17
if H_Pairs(i)<0; H_Pairs(i)=0;
end
if H_Pairs(i)>0; H_Pairs(i)=1;
end
end
%Creating a matrix of weights for the inputs of the Hidden Layer #2
Weights_Hidden_Layer_2_Pairs = [1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
-1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5];
%Getting the outputs of the Hidden Layer #2
S_Pairs = H_Pairs * Weights_Hidden_Layer_2_Pairs;
%Adding to the outputs of the Hidden Layer #2 the fourth bias
P_Pairs = [S_Pairs 1];
%Activating the neurons in the Hidden Layer #2
for i = 1:1:9
if P_Pairs(i)<0; P_Pairs(i)=0;
end
if P_Pairs(i)>0; P_Pairs(i)=1;
end
end
%Creating a matrix of weights for the Output Layer
Weights_Output_Layer_Pairs = [1 0
1 0
1 0
1 0
0 1
0 1
0 1
0 1
-0.5 -0.5];
%Getting the inputs of the Output Layer
Result_Pairs = P_Pairs * Weights_Output_Layer_Pairs;
%Activating the neurons in the Output Layer
Final_Result_Pairs = Result_Pairs;
for i = 1:1:2
if Result_Pairs(i)<0; Final_Result_Pairs(i)=0;
end
if Result_Pairs(i)>0; Final_Result_Pairs(i)=1;
end
end
% -------------- Tripples ----------------
%Creating a matrix of weights for the Layer #1
Weights_First_Layer_1_Tripples = [0.0476 -0.0285 0 0 0 0 0 0 0 0 0 0 0.1 -0.0666 0 0 0 0 0 0 0 0 0 0
0 0 0.0476 -0.0285 0 0 0 0 0 0 0 0 0 0 0.1 -0.0666 0 0 0 0 0 0 0 0
0 0 0 0 0.0476 -0.0285 0.0476 -0.0285 0 0 0 0 0 0 0 0 0.1 -0.0666 0.1 -0.0666 0 0 0 0
0 0 0 0 0 0 0 0 0.0476 -0.0285 0 0 0 0 0 0 0 0 0 0 0.1 -0.0666 0 0
0 0 0 0 0 0 0 0 0 0 0.0476 -0.0285 0 0 0 0 0 0 0 0 0 0 0.1 -0.0666
-0.96 1.02 -0.96 1.02 -0.96 1.02 -0.96 1.02 -0.96 1.02 -0.96 1.02 -0.91 1.06 -0.91 1.06 -0.91 1.06 -0.91 1.06 -0.91 1.06 -0.91 1.06];
%Getting the outputs of the Layer #1
A_Tripples = Inputs * Weights_First_Layer_1_Tripples;
%Adding to the outputs of the Layer #1 the second bias
B_Tripples = [A_Tripples 1];
%Activating the neurons in the Layer #1
for i = 1:1:25
if B_Tripples(i)<0; B_Tripples(i)=0;
end
if B_Tripples(i)>0; B_Tripples(i)=1;
end
end
%Creating a matrix of weights for the inputs of the Hidden Layer #1
Weights_Hidden_Layer_Tripples = [1 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 1
-1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5];
%Getting the outputs of the Hidden Layer #1
D_Tripples = B_Tripples * Weights_Hidden_Layer_Tripples;
%Adding to the outputs of the Hidden Layer #1 the third bias
H_Tripples = [D_Tripples 1];
%Activating the neurons in the Hidden Layer #1
for i = 1:1:13
if H_Tripples(i)<0; H_Tripples(i)=0;
end
if H_Tripples(i)>0; H_Tripples(i)=1;
end
end
%Creating a matrix of weights for the inputs of the Hidden Layer #2
Weights_Hidden_Layer_2_Tripples = [1 0 0 0
1 0 0 0
1 0 0 0
0 1 0 0
0 1 0 0
0 1 0 0
0 0 1 0
0 0 1 0
0 0 1 0
0 0 0 1
0 0 0 1
0 0 0 1
-2.5 -2.5 -2.5 -2.5];
%Getting the outputs of the Hidden Layer #2
S_Tripples = H_Tripples * Weights_Hidden_Layer_2_Tripples;
%Adding to the outputs of the Hidden Layer #2 the fourth bias
P_Tripples = [S_Tripples 1];
%Activating the neurons in the Hidden Layer #2
for i = 1:1:5
if P_Tripples(i)<0; P_Tripples(i)=0;
end
if P_Tripples(i)>0; P_Tripples(i)=1;
end
end
%Creating a matrix of weights for the Output Layer
Weights_Output_Layer_Tripples = [1 0
1 0
0 1
0 1
-0.5 -0.5];
%Getting the inputs of the Output Layer
Result_Tripples = P_Tripples * Weights_Output_Layer_Tripples;
%Activating the neurons in the Output Layer
Final_Result_Tripples = Result_Tripples;
for i = 1:1:2
if Result_Tripples(i)<0; Final_Result_Tripples(i)=0;
end
if Result_Tripples(i)>0; Final_Result_Tripples(i)=1;
end
end
% -------------- Quad ----------------
%Creating a matrix of weights for the Layer #1
Weights_First_Layer_1_Quad = [0.0476 -0.0285 0 0 0 0 0 0 0.1 -0.0666 0 0 0 0 0 0
0 0 0.0476 -0.0285 0 0 0 0 0 0 0.1 -0.0666 0 0 0 0
0 0 0 0 0.0476 -0.0285 0 0 0 0 0 0 0.1 -0.0666 0 0
0 0 0 0 0 0 0.0476 -0.0285 0 0 0 0 0 0 0.1 -0.0666
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
-0.96 1.02 -0.96 1.02 -0.96 1.02 -0.96 1.02 -0.91 1.06 -0.91 1.06 -0.91 1.06 -0.91 1.06];
%Getting the outputs of the Layer #1
A_Quad = Inputs * Weights_First_Layer_1_Quad;
%Adding to the outputs of the Layer #1 the second bias
B_Quad = [A_Quad 1];
%Activating the neurons in the Layer #1
for i = 1:1:17
if B_Quad(i)<0; B_Quad(i)=0;
end
if B_Quad(i)>0; B_Quad(i)=1;
end
end
%Creating a matrix of weights for the inputs of the Hidden Layer #1
Weights_Hidden_Layer_Quad = [1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
-1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5];
%Getting the outputs of the Hidden Layer #1
D_Quad = B_Quad * Weights_Hidden_Layer_Quad;
%Adding to the outputs of the Hidden Layer #1 the third bias
H_Quad = [D_Quad 1];
%Activating the neurons in the Hidden Layer #1
for i = 1:1:9
if H_Quad(i)<0; H_Quad(i)=0;
end
if H_Quad(i)>0; H_Quad(i)=1;
end
end
%Creating a matrix of weights for the inputs of the Hidden Layer #2
Weights_Hidden_Layer_2_Quad = [1 0
1 0
1 0
1 0
0 1
0 1
0 1
0 1
-3.5 -3.5];
%Getting the outputs of the Hidden Layer #2
S_Quad = H_Quad * Weights_Hidden_Layer_2_Quad;
%Adding to the outputs of the Hidden Layer #2 the fourth bias
P_Quad = [S_Quad 1];
%Activating the neurons in the Hidden Layer #2
for i = 1:1:3
if P_Quad(i)<0; P_Quad(i)=0;
end
if P_Quad(i)>0; P_Quad(i)=1;
end
end
%Creating a matrix of weights for the Output Layer
Weights_Output_Layer_Quad = [1 0
0 1
-0.5 -0.5];
%Getting the inputs of the Output Layer
Result_Quad = P_Quad * Weights_Output_Layer_Quad;
%Activating the neurons in the Output Layer
Final_Result_Quad = Result_Quad;
for i = 1:1:2
if Result_Quad(i)<0; Final_Result_Quad(i)=0;
end
if Result_Quad(i)>0; Final_Result_Quad(i)=1;
end
end
% -------------- Five ----------------
%Creating a matrix of weights for the Layer #1
Weights_First_Layer_1_Five = [0.0476 -0.0285 0 0 0 0 0 0 0 0 0.1 -0.0666 0 0 0 0 0 0 0 0
0 0 0.0476 -0.0285 0 0 0 0 0 0 0 0 0.1 -0.0666 0 0 0 0 0 0
0 0 0 0 0.0476 -0.0285 0 0 0 0 0 0 0 0 0.1 -0.0666 0 0 0 0
0 0 0 0 0 0 0.0476 -0.0285 0 0 0 0 0 0 0 0 0.1 -0.0666 0 0
0 0 0 0 0 0 0 0 0.0476 -0.0285 0 0 0 0 0 0 0 0 0.1 -0.0666
-0.96 1.02 -0.96 1.02 -0.96 1.02 -0.96 1.02 -0.96 1.02 -0.91 1.06 -0.91 1.06 -0.91 1.06 -0.91 1.06 -0.91 1.06];
%Getting the outputs of the Layer #1
A_Five = Inputs * Weights_First_Layer_1_Five;
%Adding to the outputs of the Layer #1 the second bias
B_Five = [A_Five 1];
%Activating the neurons in the Layer #1
for i = 1:1:21
if B_Five(i)<0; B_Five(i)=0;
end
if B_Five(i)>0; B_Five(i)=1;
end
end
%Creating a matrix of weights for the inputs of the Hidden Layer #1
Weights_Hidden_Layer_Five = [1 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 1
-1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5];
%Getting the outputs of the Hidden Layer #1
D_Five = B_Five * Weights_Hidden_Layer_Five;
%Adding to the outputs of the Hidden Layer #1 the third bias
H_Five = [D_Five 1];
%Activating the neurons in the Hidden Layer #1
for i = 1:1:11
if H_Five(i)<0; H_Five(i)=0;
end
if H_Five(i)>0; H_Five(i)=1;
end
end
%Creating a matrix of weights for the inputs of the Hidden Layer #2
Weights_Hidden_Layer_2_Five = [1 0
1 0
1 0
1 0
1 0
0 1
0 1
0 1
0 1
0 1
-4.5 -4.5];
%Getting the outputs of the Hidden Layer #2
S_Five = H_Five * Weights_Hidden_Layer_2_Five;
%Adding to the outputs of the Hidden Layer #2 the fourth bias
P_Five = [S_Five 1];
%Activating the neurons in the Hidden Layer #2
for i = 1:1:3
if P_Five(i)<0; P_Five(i)=0;
end
if P_Five(i)>0; P_Five(i)=1;
end
end
%Creating a matrix of weights for the Output Layer
Weights_Output_Layer_Five = [1 0
0 1
-0.5 -0.5];
%Getting the inputs of the Output Layer
Result_Five = P_Five * Weights_Output_Layer_Five;
%Activating the neurons in the Output Layer
Final_Result_Five = Result_Five;
for i = 1:1:2
if Result_Five(i)<0; Final_Result_Five(i)=0;
end
if Result_Five(i)>0; Final_Result_Five(i)=1;
end
end
figure(1);
subplot(5,2,[1,3,5,7,9]), bar(Inputs), title('Inputs');
subplot(5,2,2), if Final_Result_Separate(2)==1; bar(Final_Result_Separate,'r'); set(gca,'xticklabel',{'Warning','Alarm'}); end, if Final_Result_Separate(1)==1; bar(Final_Result_Separate,'y'); set(gca,'xticklabel',{'Warning','Alarm'}); end, if Final_Result_Separate(1)==0; if Final_Result_Separate(2)==0; bar(1,'g'); set(gca,'xticklabel',{' '}); end, end, title('Separate');
subplot(5,2,4), if Final_Result_Pairs(2)==1; bar(Final_Result_Pairs,'r'); set(gca,'xticklabel',{'Warning','Alarm'}); end, if Final_Result_Pairs(1)==1; bar(Final_Result_Pairs,'y'); set(gca,'xticklabel',{'Warning','Alarm'}); end, if Final_Result_Pairs(1)==0; if Final_Result_Pairs(2)==0; bar(1,'g'); set(gca,'xticklabel',{' '}); end, end, title('Pairs');
subplot(5,2,6), if Final_Result_Tripples(2)==1; bar(Final_Result_Tripples,'r'); set(gca,'xticklabel',{'Warning','Alarm'}); end, if Final_Result_Tripples(1)==1; bar(Final_Result_Tripples,'y'); set(gca,'xticklabel',{'Warning','Alarm'}); end, if Final_Result_Tripples(1)==0; if Final_Result_Tripples(2)==0; bar(1,'g'); set(gca,'xticklabel',{' '}); end, end, title('Tripples');
subplot(5,2,8), if Final_Result_Quad(2)==1; bar(Final_Result_Quad,'r'); set(gca,'xticklabel',{'Warning','Alarm'}); end, if Final_Result_Quad(1)==1; bar(Final_Result_Quad,'y'); set(gca,'xticklabel',{'Warning','Alarm'}); end, if Final_Result_Quad(1)==0; if Final_Result_Quad(2)==0; bar(1,'g'); set(gca,'xticklabel',{' '}); end, end, title('Quad');
subplot(5,2,10), if Final_Result_Five(2)==1; bar(Final_Result_Five,'r'); set(gca,'xticklabel',{'Warning','Alarm'}); end, if Final_Result_Five(1)==1; bar(Final_Result_Five,'y'); set(gca,'xticklabel',{'Warning','Alarm'}); end, if Final_Result_Five(1)==0; if Final_Result_Five(2)==0; bar(1,'g'); set(gca,'xticklabel',{' '}); end, end, title('Five');