-
Notifications
You must be signed in to change notification settings - Fork 152
/
Copy pathsupport_set_folder.py
93 lines (79 loc) · 2.66 KB
/
support_set_folder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
from pathlib import Path
from typing import Callable, Optional, Union
import torch
from torch import Tensor
from torchvision.datasets import ImageFolder
from .default_configs import default_transform
NOT_A_TENSOR_ERROR_MESSAGE = (
"SupportSetFolder handles instances as tensors. "
"Please ensure that the specific transform outputs a tensor."
)
class SupportSetFolder(ImageFolder):
"""
Create a support set from images located in a specified folder
with the following file structure:
root:
|_ subfolder_1:
|_ image_1
|_ …
|_ image_n
|_ subfolder_2:
|_ image_1
|_ …
|_ image_n
Following the ImageFolder logic, images of a same subfolder will share the same label,
and the classes will be named after the subfolders.
Example of use:
predict_transformation = transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor()
])
support_set = SupportSetFolder(
root=path_to_support_images,
transform=predict_transformation,
device="cuda"
)
with torch.no_grad():
few_shot_classifier.eval()
few_shot_classifier.process_support_set(support_set.get_images(), support_set.get_labels())
class_names = support_set.classes
predicted_labels = few_shot_classifier(query_images.to(device)).argmax(dim=1)
predicted_classes = [ support_set.classes[label] for label in predicted_labels]
"""
def __init__(
self,
root: Union[str, Path],
device="cpu",
image_size: int = 84,
transform: Optional[Callable] = None,
**kwargs,
):
"""
Args:
device:
**kwargs: kwargs for the parent ImageFolder class
"""
transform = (
transform if transform else default_transform(image_size, training=False)
)
super().__init__(str(root), transform=transform, **kwargs)
self.device = device
try:
self.images = torch.stack([instance[0] for instance in self]).to(
self.device
)
except TypeError as type_error:
raise TypeError(NOT_A_TENSOR_ERROR_MESSAGE) from type_error
def get_images(self) -> Tensor:
"""
Returns:
support set images as a (n_images, n_channels, width, height) tensor
on the selected device
"""
return self.images
def get_labels(self) -> Tensor:
"""
Returns:
support set labels as a tensor on the selected device
"""
return torch.tensor(self.targets).to(self.device)