-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtemp.lua
55 lines (38 loc) · 1.1 KB
/
temp.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
require 'nn'
require 'cunn'
require 'cutorch'
require 'cudnn'
cutorch.manualSeedAll(2)
inputDim=8
outputDim=13
attention_da=31
attention_r=37
batchsize=2
model = nn.Sequential()
model:add(cudnn.BLSTM(inputDim, outputDim, 1, true))
attention = nn.Sequential()
attention:add(nn.Copy(nil,nil,true))
attention:add(cudnn.TemporalConvolution(outputDim*2, attention_da, 1))
attention:add(cudnn.Tanh())
attention:add(cudnn.TemporalConvolution(attention_da, attention_r, 1))
attention:add(nn.Transpose({2,3}))
attention:add(nn.View(batchsize*attention_r, -1))
attention:add(nn.SoftMax())
attention:add(nn.View(batchsize, attention_r, -1))
part1 = nn.ConcatTable()
part1:add(attention)
part1:add(nn.Identity())
model:add(part1)
model:add(nn.MM())
model:add(nn.View(batchsize, outputDim*2*attention_r))
model:add(nn.ReLU())
model:add(nn.Linear(outputDim*2*attention_r, 1000))
model = model:cuda()
input = torch.randn(2,10,inputDim):contiguous():cuda()
p,g=model:getParameters()
print(model:get(1).weight[1])
print(p[1])
model:get(1).weight[1]=22
print(model:get(1).weight[1])
print(p[1])
--print(model:forward(input))