-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathddqn.py
164 lines (135 loc) · 5.99 KB
/
ddqn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
import numpy as np
import keras
import random
from keras.layers import Input, Dense, Activation, Dropout
from keras.models import Sequential
from tensorflow.keras import layers
from tensorflow.keras import losses
from keras.optimizers import Adam
from tensorflow.keras.layers import Input, Conv2D, Flatten, Dense, MaxPooling2D
class DoubleDQN():
def __init__(self):
# hyperparameters
# self.env = env
self.gamma = 0.99
self.nn_learning_rate = 0.0002
self.nn_batch_size = None
self.epochs = 1
self.minibatch_sz = 64
self.epsilon = 1.
self.epsilon_decay = 0.992
self.epsilon_floor = 0.05
# self.n_s = env.observation_space.shape[0]
self.n_a = 4 # (输出动作空间)
self._output_dim = 4
self.description = 'DQN Learner'
self.update_frequency = 100
self.verbose = False
# memory
self.memory_max = 50000
self.reset()
def reset(self):
self.epsilon = 1.
self.step = 0
self.memory = [[], [], [], []]
# create nn's
self.model = self._make_model_()
self.target_model = self._make_model_()
def _make_model_(self):
inputs_1 = keras.Input(shape=(16, 16, 1))
x1 = Conv2D(16, (7, 7), strides=2, activation='relu')(inputs_1)
x1 = Conv2D(32, (2, 2), strides=1, activation='relu')(x1)
x1 = Flatten()(x1)
inputs_2 = keras.Input(shape=(16, 16, 1))
x2 = Conv2D(16, (7, 7), strides=2, activation='relu')(inputs_2)
x2 = Conv2D(32, (2, 2), strides=1, activation='relu')(x2)
x2 = Flatten()(x2)
inputs_3 = keras.Input(shape=(16, 16, 1))
x3 = Conv2D(16, (7, 7), strides=2, activation='relu')(inputs_3)
x3 = Conv2D(32, (2, 2), strides=1, activation='relu')(x3)
x3 = Flatten()(x3)
x = keras.layers.concatenate([x1, x2, x3])
x = layers.Dense(128, activation='relu')(x)
x = layers.Dense(64, activation='relu')(x)
x = layers.Dense(self._output_dim, activation='linear')(x)
# outputs = layers.Dense(self._output_dim, activation='linear')(x)
model = keras.Model(inputs=[inputs_1, inputs_2, inputs_3], outputs=[x], name='my_model')
model.compile(loss=losses.mean_squared_error, optimizer=Adam(lr=0.001))
return model
def _model_update_(self):
self.target_model.set_weights(self.model.get_weights())
def pick_action(self, state):
if np.random.random() < self.epsilon:
return np.random.choice(self.n_a)
else:
tmp = self.model.predict(state)
return np.argmax(tmp[0])
def update(self, old_state, old_action, reward, current_sate, done, epsilon):
memory_len = len(self.memory[0]) + len(self.memory[0]) + len(self.memory[0]) + len(self.memory[0])
# if len(self.memory) > self.memory_max: self.memory.pop(0)
if memory_len > self.memory_max: self.memory = [[], [], [], []]
self.memory[old_action].append([old_state, old_action, reward, current_sate, done])
self._batch_train_()
if self.step % self.update_frequency == 0:
self._model_update_()
if done and self.epsilon > self.epsilon_floor:
# self.epsilon = self.epsilon * self.epsilon_decay
self.epsilon = epsilon
self.step += 1
def _batch_train_(self):
# memory_len = len(self.memory[0]) + len(self.memory[1]) + len(self.memory[2]) + len(self.memory[3])
m0 = len(self.memory[0])
m1 = len(self.memory[1])
m2 = len(self.memory[2])
m3 = len(self.memory[3])
# if memory_len > self.minibatch_sz:
if m1 > 16 and m2 > 16 and m3 > 16 and m0 > 16:
em1 = np.zeros((100, 16, 16, 1))
v1 = np.zeros((100, 16, 16, 1))
p1 = np.zeros((100, 16, 16, 1))
em2 = np.zeros((100, 16, 16, 1))
v2 = np.zeros((100, 16, 16, 1))
p2 = np.zeros((100, 16, 16, 1))
# create training batch
# batch = random.sample(self.memory, self.minibatch_sz)
# print("0", len(self.memory[0]), "1", len(self.memory[1]), "2", len(self.memory[2]), "3", len(self.memory[3]))
b0 = random.sample(self.memory[0], 16)
b1 = random.sample(self.memory[1], 16)
b2 = random.sample(self.memory[2], 16)
b3 = random.sample(self.memory[3], 16)
batch = b0 + b1 + b2 + b3
i = 0
for val in batch:
p1[i] = val[0][0]
em1[i] = val[0][1]
v1[i] = val[0][2]
p2[i] = val[3][0]
em2[i] = val[3][1]
v2[i] = val[3][2]
i += 1
# 根据memory中的随机选择的结果重构丢入网络进行训练
states = [p1, em1, v1]
next_states = [p2, em2, v2]
# use update rule from Minh 2013
q_s_a = self.model.predict(states) # predict Q(state), for every sample
q_s_a_d = self.model.predict(next_states) # predict Q(next_state), for every sample
tm_q_s_a_d = self.target_model.predict(next_states)
a_maxes = np.argmax(q_s_a_d, axis=1) # 返回q_s_a_d中最大值的索引
y = np.zeros((100, 1, 4))
em = np.zeros((100, 16, 16, 1))
v = np.zeros((100, 16, 16, 1))
p = np.zeros((100, 16, 16, 1))
for i, b in enumerate(batch):
state, action, reward, n_states, done = b[0], b[1], b[2], b[3], b[4]
target = reward
if not done:
Q_target_max = tm_q_s_a_d[i][a_maxes[i]]
target += self.gamma * Q_target_max
current_q = q_s_a[i]
current_q[action] = target
p[i] = state[0]
em[i] = state[1]
v[i] = state[2]
y[i] = current_q
x = [p, em, v]
self.model.fit(x, y, epochs=1, verbose=False) # train the NNt