-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
285 lines (218 loc) · 9.59 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
#!/usr/bin/env python3
__author__ = "Shivchander Sudalairaj"
__license__ = "MIT"
'''
Model Definition: Multi Layer DenseNN
'''
import numpy as np
import pandas as pd
import math
import matplotlib.pyplot as plt
np.random.seed(1)
class DenseNN(object):
def __init__(self):
self.n_x = 784
self.n_h = 100
self.n_l = 3
self.n_y = 10
self.layer_dims = []
self.parameters = {}
self.X = None
self.y = None
def initialize_parameters(self, n_x, n_h, n_l, n_y):
self.n_x = n_x
self.n_h = n_h
self.n_l = n_l
self.n_y = n_y
self.layer_dims = [n_x] + [n_h] * n_l + [n_y]
for l in range(1, len(self.layer_dims)):
self.parameters['W' + str(l)] = np.random.randn(self.layer_dims[l], self.layer_dims[l - 1]) * 0.01
self.parameters['b' + str(l)] = np.zeros((self.layer_dims[l], 1))
assert (self.parameters['W' + str(l)].shape == (self.layer_dims[l], self.layer_dims[l - 1]))
assert (self.parameters['b' + str(l)].shape == (self.layer_dims[l], 1))
return self.parameters
def sigmoid(self, Z):
A = 1 / (1 + np.exp(-Z))
cache = Z
return A, cache
def relu(self, Z):
A = np.maximum(0, Z)
cache = Z
return A, cache
def activation_forward(self, A_prev, W, b, activation):
def linear_forward(A, W, b):
Z = np.dot(W, A) + b
cache = (A, W, b)
return Z, cache
if activation == "sigmoid":
Z, linear_cache = linear_forward(A_prev, W, b)
A, activation_cache = self.sigmoid(Z)
elif activation == "relu":
Z, linear_cache = linear_forward(A_prev, W, b)
A, activation_cache = self.relu(Z)
cache = (linear_cache, activation_cache)
return A, cache
def forward_propagation(self, X, parameters):
caches = []
A = X
L = len(parameters) // 2
for l in range(1, L):
A_prev = A
A, cache = self.activation_forward(A_prev, parameters['W' + str(l)],
parameters['b' + str(l)], activation='relu')
caches.append(cache)
AL, cache = self.activation_forward(A, parameters['W' + str(L)],
parameters['b' + str(L)], activation='sigmoid')
caches.append(cache)
return AL, caches
def compute_cost(self, AL, Y):
from sklearn.metrics import log_loss
m = Y.shape[1]
cost = 0
for yt, yp in zip(Y.T, AL.T):
cost += log_loss(yt, yp)
return cost / m
def linear_backward(self, dZ, cache):
A_prev, W, b = cache
m = A_prev.shape[1]
dW = np.dot(dZ, cache[0].T) / m
db = np.squeeze(np.sum(dZ, axis=1, keepdims=True)) / m
dA_prev = np.dot(cache[1].T, dZ)
return dA_prev, dW, db
def relu_backward(self, dA, cache):
Z = cache
dZ = np.array(dA, copy=True)
dZ[Z <= 0] = 0
return dZ
def sigmoid_backward(self, dA, cache):
Z = cache
s = 1 / (1 + np.exp(-Z))
dZ = dA * s * (1 - s)
return dZ
def linear_activation_backward(self, dA, cache, activation):
linear_cache, activation_cache = cache
if activation == "relu":
dZ = self.relu_backward(dA, activation_cache)
dA_prev, dW, db = self.linear_backward(dZ, linear_cache)
db = db.reshape(len(db), 1)
elif activation == "sigmoid":
dZ = self.sigmoid_backward(dA, activation_cache)
dA_prev, dW, db = self.linear_backward(dZ, linear_cache)
db = db.reshape(len(db), 1)
return dA_prev, dW, db
def backward_propagation(self, AL, Y, caches):
grads = {}
L = len(caches)
m = AL.shape[1]
Y = Y.reshape(AL.shape)
dAL = - (np.divide(Y, AL) - np.divide(1 - Y, 1 - AL))
current_cache = caches[L - 1]
grads["dA" + str(L)], grads["dW" + str(L)], grads["db" + str(L)] = self.linear_activation_backward(dAL,
current_cache,
"sigmoid")
for l in reversed(range(L - 1)):
current_cache = caches[l]
dA_prev_temp, dW_temp, db_temp = self.linear_activation_backward(grads["dA" + str(l + 2)], current_cache,
"relu")
grads["dA" + str(l + 1)] = dA_prev_temp
grads["dW" + str(l + 1)] = dW_temp
grads["db" + str(l + 1)] = db_temp
return grads
def initialize_velocity(self, parameters):
L = len(parameters) // 2
v = {}
for l in range(L):
v["dW" + str(l + 1)] = np.zeros_like(parameters["W" + str(l + 1)])
v["db" + str(l + 1)] = np.zeros_like(parameters["b" + str(l + 1)])
return v
def update_parameters_with_momentum(self, parameters, grads, v, learning_rate):
L = len(parameters) // 2
beta = 0.9
for l in range(L):
# compute velocities
v["dW" + str(l + 1)] = beta * v["dW" + str(l + 1)] + (1 - beta) * grads['dW' + str(l + 1)]
v["db" + str(l + 1)] = beta * v["db" + str(l + 1)] + (1 - beta) * grads['db' + str(l + 1)]
# update parameters
parameters["W" + str(l + 1)] = parameters["W" + str(l + 1)] - learning_rate * v["dW" + str(l + 1)]
parameters["b" + str(l + 1)] = parameters["b" + str(l + 1)] - learning_rate * v["db" + str(l + 1)]
return parameters, v
def random_mini_batches(self, X, Y, mini_batch_size=64, seed=0):
m = X.shape[1]
mini_batches = []
permutation = list(np.random.permutation(m))
shuffled_X = X[:, permutation]
shuffled_Y = Y[:, permutation].reshape((10, m))
num_complete_minibatches = math.floor(m / mini_batch_size)
for k in range(0, num_complete_minibatches):
mini_batch_X = shuffled_X[:, k * mini_batch_size:(k + 1) * mini_batch_size]
mini_batch_Y = shuffled_Y[:, k * mini_batch_size:(k + 1) * mini_batch_size]
mini_batch = (mini_batch_X, mini_batch_Y)
mini_batches.append(mini_batch)
if m % mini_batch_size != 0:
end = m - mini_batch_size * math.floor(m / mini_batch_size)
mini_batch_X = shuffled_X[:, num_complete_minibatches * mini_batch_size:]
mini_batch_Y = shuffled_Y[:, num_complete_minibatches * mini_batch_size:]
mini_batch = (mini_batch_X, mini_batch_Y)
mini_batches.append(mini_batch)
return mini_batches
def fit(self, X, y, n_x, n_h, n_l, n_y, learning_rate=0.001, batch_size=64, num_epochs=1000, plot_error=True):
# parameters = L_layer_model(train_x, train_y, layers_dims, num_iterations=2500, print_cost=True)
self.X = X.T
self.y = y.T
self.initialize_parameters(n_x, n_h, n_l, n_y)
errors = []
v = self.initialize_velocity(self.parameters)
# Optimization loop
for i in range(num_epochs):
minibatches = self.random_mini_batches(self.X, self.y, batch_size)
for minibatch in minibatches:
(minibatch_X, minibatch_Y) = minibatch
# Forward propagation
al, caches = self.forward_propagation(minibatch_X, self.parameters)
# Compute cost
cost = self.compute_cost(al, minibatch_Y)
# Backward propagation
grads = self.backward_propagation(al, minibatch_Y, caches)
# update parameters
self.parameters, v = self.update_parameters_with_momentum(self.parameters, v, grads, learning_rate)
# Print the cost every 10 epoch
if plot_error and i % 10 == 0:
from sklearn.metrics import balanced_accuracy_score
y_preds = self.predict(self.X.T)
balanced_acc = balanced_accuracy_score(np.argmax(self.y.T, axis=1), np.argmax(y_preds, axis=1))
error = 1 - balanced_acc
print("Error after epoch %i: %f" % (i, error))
errors.append(error)
if error <= 0.01:
print('Error is less than 1%. Stopping Training')
break
if plot_error:
plt.plot(list(range(0, len(errors) * 10, 10)), errors)
plt.ylabel('Error (1 - balanced acc)')
plt.xlabel('epochs')
plt.title('Training Error')
plt.savefig('figs/error.pdf')
plt.clf()
return self.parameters
def threshold_function(self, y_preds):
rows, cols = y_preds.shape
for row in range(rows):
for col in range(cols):
if y_preds[row, col] >= 0.75:
y_preds[row, col] = 1
if y_preds[row, col] <= 0.25:
y_preds[row, col] = 0
return y_preds
def predict(self, X):
X = X.T
# Forward propagation
a, caches = self.forward_propagation(X, self.parameters)
return self.threshold_function(a.T)
def plot_confusion_matrix(y_true, y_pred):
from sklearn.metrics import confusion_matrix
cm = confusion_matrix(np.argmax(y_true, axis=1), np.argmax(y_pred, axis=1))
import seaborn as sns
df_cm = pd.DataFrame(cm, range(10), range(10))
sns.set(font_scale=1.4)
sns.heatmap(df_cm, annot=True)
plt.savefig('figs/cm.pdf')