-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
59 lines (50 loc) · 2.47 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
#!/usr/bin/env python3
__author__ = "Shivchander Sudalairaj"
__license__ = "MIT"
'''
Denoising and classification of MNIST Dataset using Autoencoder implemented from scratch
'''
from utils import *
from autoencoder import AutoencoderNN
from classifier import ClassifierNN
if __name__ == '__main__':
# data = parse_data('dataset/MNISTnumImages5000_balanced.txt', 'dataset/MNISTnumLabels5000_balanced.txt')
# split_data(data)
# train = pd.read_csv('dataset/MNIST_Train.csv', sep=",")
# test = pd.read_csv('dataset/MNIST_Test.csv', sep=",")
X_train, train_labels, X_test, test_labels = get_train_test('dataset/MNIST_Train.csv', 'dataset/MNIST_Test.csv')
X_noisy_train, X_noisy_test = add_mask_noise(X_train, X_test, f0=0.4, f1=0.05)
# q1 Denoising Autoencoder
# model = AutoencoderNN()
# _ = model.fit(X_noisy_train, X_train, 784, 200, 1, 784, learning_rate=0.01, batch_size=32, num_epochs=400, plot_error=True)
# random_outputs(model, X_noisy_test, X_test)
# plot_train_test_error(model, X_train, X_test)
# train_test_digit_error(model, X_train, X_test)
# plot_features(model.parameters['W1'], title='Denoising Autoencoder')
# q2 Classifier
# Case 1: Pretrained weights from HW3 Problem 2
# model1 = AutoencoderNN()
# model1.fit(X_train, X_train, 784, 200, 1, 784, learning_rate=0.01, batch_size=32, num_epochs=20, plot_error=True)
#
# model2 = ClassifierNN()
# model2.fit(X_train, X_train, 784, 200, 1, 784, pre_trained_weights=model1.parameters,
# learning_rate=0.01, batch_size=32, num_epochs=150, plot_error=True)
#
# model3 = AutoencoderNN()
# _ = model3.fit(X_noisy_train, X_train, 784, 200, 1, 784, learning_rate=0.01, batch_size=32, num_epochs=250,
# plot_error=True)
#
# model4 = ClassifierNN()
# _ = model4.fit(X_train, train_labels, 784, 200, 1, 10, pre_trained_weights=model3.parameters,
# learning_rate=0.01, batch_size=32, num_epochs=250, plot_error=True)
#
# y1_train_preds = model2.predict(X_train)
# y1_test_preds = model2.predict(X_test)
#
# y2_train_preds = model4.predict(X_train)
# y2_test_preds = model4.predict(X_test)
#
# plot_confusion_matrix(train_labels, y1_train_preds, 'case1train_cm')
# plot_confusion_matrix(test_labels, y1_test_preds, 'case1test_cm')
# plot_confusion_matrix(train_labels, y2_train_preds, 'case2train_cm')
# plot_confusion_matrix(test_labels, y2_test_preds, 'case2test_cm')