-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata.py
37 lines (31 loc) · 1.23 KB
/
data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
# @Time : 2023/1/6 下午4:11
# @Author : Boyang
# @Site :
# @File : data.py
# @Software: PyCharm
import torchvision
import torch.utils.data as _data
import matplotlib.pyplot as plt
train_dataset = torchvision.datasets.MNIST("./data", train=True,
transform=torchvision.transforms.ToTensor(),
download=False)
test_dataset = torchvision.datasets.MNIST("./data", train=False,
transform=torchvision.transforms.ToTensor(),
download=False)
def get_dataset_loader(batch_size, train, **kwargs):
dataset = train_dataset if train else test_dataset
return _data.DataLoader(dataset,
batch_size=batch_size,
shuffle=True,
pin_memory=True,
**kwargs)
if __name__ == '__main__':
for images, label in get_dataset_loader(3, True):
batch = images.shape[0]
for i in range(batch):
img = images[i].view(28, 28, 1)
print(img.type())
plt.imshow(img)
plt.title(label[i].item())
plt.show()
break