-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathBRCA1_SGE1_global_20171119_noggplot.Rmd
1410 lines (1004 loc) · 119 KB
/
BRCA1_SGE1_global_20171119_noggplot.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
---
title: "BRCA1_SGE1_global_20171119.Rmd"
author: "Greg Findlay"
date: "11/19/2017"
output: html_document
---
file copied from the BRCA1_SGE2_global_20171119 file and then converted by replacing:
1. XrL4 with rL4
2. rL41 with r1
3. rL42 with r2
4. rL4 with r
Updated global analysis scripts to apply filters and get final functional scores with updated pipeline for both SGE1 and SGE2.
UPDATE: Error in using sapply for bravo, flossies and gnomAD alleles...not sure why.
```{r}
#MUST RUN POSITIONAL CORRECTION MARKDOWN SCRIPTS
#i.e. positional_modeling_SGE1_v6_20171012.Rmd
# tHDR_pos_merge_df are built with Xyyr1_prog_map_thresh5_df_r2_int_ord_df -- prog_map means: all_hdr_variant == TRUE, !=WT ,POS!= REF, and > threshold of 0.00001
#add a position from PAM based on exon...
# merge df's built off the prog_map_thresh_5 data sets.
#previous change in code in sam_to_edits script dictated that 'hdr5' is always the cut-proximal site, and 'hdr3' is always the cut-distal site, so here even though X2, X5 and X15 are cut at the 3' PAM site, 'hdr5' is still used to indicate we want the data at the cut site.
X2r_tHDR_pos_merge_df$hdr_cut <- X2r_tHDR_pos_merge_df$hdr5
X3r_tHDR_pos_merge_df$hdr_cut <- X3r_tHDR_pos_merge_df$hdr5
X4r_tHDR_pos_merge_df$hdr_cut <- X4r_tHDR_pos_merge_df$hdr5
X5r_tHDR_pos_merge_df$hdr_cut <- X5r_tHDR_pos_merge_df$hdr5
X15r_tHDR_pos_merge_df$hdr_cut <- X15r_tHDR_pos_merge_df$hdr5
X16r_tHDR_pos_merge_df$hdr_cut <- X16r_tHDR_pos_merge_df$hdr5
X17r_tHDR_pos_merge_df$hdr_cut <- X17r_tHDR_pos_merge_df$hdr5
X18r_tHDR_pos_merge_df$hdr_cut <- X18r_tHDR_pos_merge_df$hdr5
X19r_tHDR_pos_merge_df$hdr_cut <- X19r_tHDR_pos_merge_df$hdr5
X20r_tHDR_pos_merge_df$hdr_cut <- X20r_tHDR_pos_merge_df$hdr5
X21r_tHDR_pos_merge_df$hdr_cut <- X21r_tHDR_pos_merge_df$hdr5
X22r_tHDR_pos_merge_df$hdr_cut <- X22r_tHDR_pos_merge_df$hdr5
X23r_tHDR_pos_merge_df$hdr_cut <- X23r_tHDR_pos_merge_df$hdr5
#calling these again in case old script re-assigned without the 0-indexing adjustment
X2_cut_pos <- 41276033.5+1
X3_cut_pos <- 41267763.5+1
X4_cut_pos <- 41258518.5+1
X5_cut_pos <- 41256892.5+1
X15_cut_pos <- 41222951.5+1
X16_cut_pos <- 41219676.5+1
X17_cut_pos <- 41215950.5+1
X18_cut_pos <- 41215377.5+1
X19_cut_pos <- 41209129.5+1
X20_cut_pos <- 41203127.5+1
X21_cut_pos <- 41201207.5+1
X22_cut_pos <- 41199706.5+1
X23_cut_pos <- 41197794.5+1
#binding all of the merge df's together...
Xr_all_tHDR_pos_merge_master_df <- rbind(X2r_tHDR_pos_merge_df,X3r_tHDR_pos_merge_df,X4r_tHDR_pos_merge_df,X5r_tHDR_pos_merge_df,X15r_tHDR_pos_merge_df,X16r_tHDR_pos_merge_df,X17r_tHDR_pos_merge_df,X18r_tHDR_pos_merge_df,X19r_tHDR_pos_merge_df,X20r_tHDR_pos_merge_df,X21r_tHDR_pos_merge_df,X22r_tHDR_pos_merge_df,X23r_tHDR_pos_merge_df)
Xr_all_tHDR_pos_merge_master_df$pos_alt <- paste(Xr_all_tHDR_pos_merge_master_df$pos, Xr_all_tHDR_pos_merge_master_df$alt, sep='')
#add a clinvar transcript annotation here
#add a clinvar mutation string i.e. c.
#add some sort of intronic indication (i.e. c. 5017 -3 C -> A)
#write.table(Xr_all_tHDR_pos_merge_master_df, "/mount/SGE/BRCA1/Xr_all_tHDR_pos_merge_v6_df_20171119.txt", sep="\t")
Xr_all_tHDR_pos_merge_master_df <- read.table("/mount/SGE/BRCA1/Xr_all_tHDR_pos_merge_v6_df_20171119.txt", sep="\t")
### Detect outliers in data set by comparing post-pre selection and pre-lib selection
#accounting for position again, but emphasizing outliers
#same plot as above but fitting curves by conseq, as well as total fit
#does post/lib give a different result than pre/lib+post/pre?
#does post/lib give a different result than pre/lib+post/pre (labelled with exon)
#and with a density contour...
#ID outliers with high pre/lib:
Xr_all_tHDR_pos_merge_master_df[which(as.numeric(as.character(Xr_all_tHDR_pos_merge_master_df$r1r2_tHDR_pre_lib_loess_r1r2)) > 1.2),c('exon','pos','conseq','r1r2_tHDR_pre_lib_loess_r1r2','tHDR_post_pre_ratio_r1r2_mean_synnorm')]
#ID outliers with lost pre/lib
Xr_all_tHDR_pos_merge_master_df[which(as.numeric(as.character(Xr_all_tHDR_pos_merge_master_df$r1r2_tHDR_pre_lib_loess_r1r2)) < -2 ),c('exon','pos','conseq','r1r2_tHDR_pre_lib_loess_r1r2','tHDR_post_pre_ratio_r1r2_mean_synnorm')]
#global plot vs. error:
#do any variants drop out completely? lib to pre
#with size being correction rate:
#tHDR reads
#do any variants drop out completely? pre to post
#tHDR reads
#variant filtering:
#r1 frequency already must be >= .00001
length(Xr_all_tHDR_pos_merge_master_df$tHDR_lib_pseudo_freq)
length(which(Xr_all_tHDR_pos_merge_master_df$tHDR_lib_pseudo_freq > 10^-4))
length(which(Xr_all_tHDR_pos_merge_master_df$r2_pre_freq >= 0.00001))
#NOTE -- DEMAND that only the one matching the exon's cut end is yes!! This will solve all NAG / NTG issues...
length(which(Xr_all_tHDR_pos_merge_master_df$c_hdr_snv == 'True'))
length(which(Xr_all_tHDR_pos_merge_master_df$hdr3 =='yes')) #distal edits
length(which(Xr_all_tHDR_pos_merge_master_df$hdr5 =='yes')) #proximal edits
#want this one!!
length(which(Xr_all_tHDR_pos_merge_master_df$hdr_cut =='yes'))
Xr_all_filter_lib_hdr_cut_df <- Xr_all_tHDR_pos_merge_master_df[which(Xr_all_tHDR_pos_merge_master_df$tHDR_lib_pseudo_freq > 10^-4 & Xr_all_tHDR_pos_merge_master_df$r2_pre_freq >= 0.00001 & Xr_all_tHDR_pos_merge_master_df$hdr_cut =='yes'),]
#high sequencing error contribution -- average of two replicates must be > 0.5 in cSNV context
length(which((Xr_all_tHDR_pos_merge_master_df$corr_pre_pseudo/Xr_all_tHDR_pos_merge_master_df$pre_pseudo + Xr_all_tHDR_pos_merge_master_df$r2_corr_pre_pseudo/Xr_all_tHDR_pos_merge_master_df$r2_pre_pseudo)/2 <0.5))
#which points are poorly represented in cSNV context compared to potential seq error? not worth using!
Xr_all_filter_lib_hdr_cut_error_df <- Xr_all_tHDR_pos_merge_master_df[which(Xr_all_tHDR_pos_merge_master_df$tHDR_lib_pseudo_freq > 10^-4 & Xr_all_tHDR_pos_merge_master_df$r2_pre_freq >= 0.00001 & Xr_all_tHDR_pos_merge_master_df$hdr_cut =='yes' & (Xr_all_tHDR_pos_merge_master_df$corr_pre_pseudo/Xr_all_tHDR_pos_merge_master_df$pre_pseudo + Xr_all_tHDR_pos_merge_master_df$r2_corr_pre_pseudo/Xr_all_tHDR_pos_merge_master_df$r2_pre_pseudo)/2 <0.5),]
Xr_all_filter_lib_hdr_cut_df <- Xr_all_tHDR_pos_merge_master_df[which(Xr_all_tHDR_pos_merge_master_df$tHDR_lib_pseudo_freq > 10^-4 & Xr_all_tHDR_pos_merge_master_df$r2_pre_freq >= 0.00001 & Xr_all_tHDR_pos_merge_master_df$hdr_cut =='yes'),]
#created a new column pasting the pos and alt rows together above -- all of these were manually identified as outliers in the pre/lib loess.2-adjsuted tHDR mean values.
#list of NCGG variants at cut PAMs by pos_alt:
exclude_NCGG_active <- c('41256887C','41222959G','41209124C','41199701C','41197789C')
#list of NCGG PAMs
exclude_NCGG_all <- c('41256887C','41222959G','41209124C','41199701C','41197789C','41267771G','41215385G','41203121C','41201202C')
#list of NXG variants at cut PAMs (already exlcuded by requirement of prox pam present):
exclude_NXG_all <- c('41276039A','41267769A','41267769T','41222957A','41222957T','41215383A','41215383T','41209126T','41209126A','41203123T','41203123A','41201204A','41201204T','41199703T','41199703A','41197791T','41197791A')
#list of X5 NAG variants at cut PAM and PAM+1 variants (poor fit):
exclude_X5_PAM <- c('41256890G','41256890C','41256890T','41256887C','41256887G','41256887A')
#list of other variants near cut site depleted heavily, including X2 pam, and X16 ps var's.
exclude_other_ps_pam <- c('41276038A','41219672G')
#fall substantially above:
length(which(Xr_all_tHDR_pos_merge_master_df$r1r2_tHDR_pre_lib_loess_r1r2 > 1))
exclude_high_pre_lib <- Xr_all_tHDR_pos_merge_master_df[which(Xr_all_tHDR_pos_merge_master_df$r1r2_tHDR_pre_lib_loess_r1r2 > 1),c('pos_alt')]
Xr_all_exclude_list <- c(exclude_NCGG_all,exclude_NXG_all,exclude_X5_PAM,exclude_other_ps_pam,exclude_high_pre_lib)
#only removing re-editing outliers and inflated pre/lib's
Xr_all_tHDR_pos_merge_exclude <- Xr_all_tHDR_pos_merge_master_df[! Xr_all_tHDR_pos_merge_master_df$pos_alt %in% Xr_all_exclude_list,]
#removing all points flagged.
Xr_all_tHDR_pos_merge_all_filters <- Xr_all_filter_lib_hdr_cut_df[! Xr_all_filter_lib_hdr_cut_df$pos_alt %in% Xr_all_exclude_list,]
#filtered sets compared to full set: Xr_all_tHDR_pos_merge_all_filters
#testing which points are drastically different between pre/lib+post/pre and post/lib:
#does post/lib give a different result than pre/lib+post/pre (labelled with exon)
#unfiltered vs. CADD:
cor(log2(Xr_all_tHDR_pos_merge_master_df_CADD$tHDR_post_pre_ratio_r1r2_mean_synnorm) + Xr_all_tHDR_pos_merge_master_df_CADD$r1r2_tHDR_pre_lib_loess_r1r2,as.numeric(as.character(Xr_all_tHDR_pos_merge_master_df_CADD$CADD.phred)),method='spearman')
cor(Xr_all_tHDR_pos_merge_master_df_CADD$r1r2_tHDR_post_lib_loess_r1r2,as.numeric(as.character(Xr_all_tHDR_pos_merge_master_df_CADD$CADD.phred)),method='spearman')
cor(Xr_all_tHDR_pos_merge_master_df_CADD$r_tHDR_post_lib_loess_e.sns_r1r2_mean,as.numeric(as.character(Xr_all_tHDR_pos_merge_master_df_CADD$CADD.phred)),method='spearman')
#filtered vs. CADD (very slight improvement)
cor(log2(Xr_all_tHDR_pos_merge_all_filters_CADD$tHDR_post_pre_ratio_r1r2_mean_synnorm) + Xr_all_tHDR_pos_merge_all_filters_CADD$r1r2_tHDR_pre_lib_loess_r1r2,as.numeric(as.character(Xr_all_tHDR_pos_merge_all_filters_CADD$CADD.phred)),method='spearman')
cor(Xr_all_tHDR_pos_merge_all_filters_CADD$r1r2_tHDR_post_lib_loess_r1r2,as.numeric(as.character(Xr_all_tHDR_pos_merge_all_filters_CADD$CADD.phred)),method='spearman')
cor(Xr_all_tHDR_pos_merge_all_filters_CADD$r_tHDR_post_lib_loess_e.sns_r1r2_mean,as.numeric(as.character(Xr_all_tHDR_pos_merge_all_filters_CADD$CADD.phred)),method='spearman')
#RNA analysis (excluding exon 18 for now):
Xr_all_tHDR_pos_merge_all_filters_rna_syn <- Xr_all_tHDR_pos_merge_all_filters[which((Xr_all_tHDR_pos_merge_all_filters$conseq == 'SYNONYMOUS' & Xr_all_tHDR_pos_merge_all_filters$c_hdr_snv == 'True' & Xr_all_tHDR_pos_merge_all_filters$exon != 'X18' ) | (Xr_all_tHDR_pos_merge_all_filters$conseq == 'SPLICE_SITE' & Xr_all_tHDR_pos_merge_all_filters$c_hdr_snv == 'True' & Xr_all_tHDR_pos_merge_all_filters$CDSpos != 'NA'& Xr_all_tHDR_pos_merge_all_filters$exon != 'X18')),]
#missense and syn
Xr_all_tHDR_pos_merge_all_filters_rna_syn_mis_spl <- Xr_all_tHDR_pos_merge_all_filters[which((Xr_all_tHDR_pos_merge_all_filters$conseq == 'SYNONYMOUS' & Xr_all_tHDR_pos_merge_all_filters$c_hdr_snv == 'True' & Xr_all_tHDR_pos_merge_all_filters$exon != 'X18') | (Xr_all_tHDR_pos_merge_all_filters$conseq == 'NON_SYNONYMOUS' & Xr_all_tHDR_pos_merge_all_filters$c_hdr_snv == 'True' & Xr_all_tHDR_pos_merge_all_filters$exon != 'X18') | (Xr_all_tHDR_pos_merge_all_filters$conseq == 'SPLICE_SITE' & Xr_all_tHDR_pos_merge_all_filters$c_hdr_snv == 'True' & Xr_all_tHDR_pos_merge_all_filters$CDSpos != 'NA' & Xr_all_tHDR_pos_merge_all_filters$exon != 'X18')),]
RNA_intervals <- seq(-5,2,length.out=71)
LOF_SNV_fractions <- c()
SNVs_below_RNA_thresh_count <- c()
for (x in RNA_intervals){
snvs_below <- which(log2(Xr_all_tHDR_pos_merge_all_filters_rna_syn_mis_spl$tHDR_rna_pre_ratio_r1r2_mean_synnorm) <= x)
count_snvs_below <- length(snvs_below)
SNVs_below_RNA_thresh_count <- append(SNVs_below_RNA_thresh_count,count_snvs_below)
low_fit_count <- length(which(Xr_all_tHDR_pos_merge_all_filters_rna_syn_mis_spl[snvs_below,'r_tHDR_post_lib_loess_e.sns_r1r2_mean'] <= -1.25)) #threshold for fitness arbitrarily set here as rough bimodal point
LOF_SNV_fractions <- append(LOF_SNV_fractions,low_fit_count/count_snvs_below)
}
rna_fitness_df <- data.frame(fraction_snvs_LOF = LOF_SNV_fractions, log2_rna_expression_threshold = RNA_intervals, snvs_below_RNA_thresh = SNVs_below_RNA_thresh_count)
#plot showing percent SNVs tolerated below given RNA level
#filters on new filtered data:
Xr_all_tHDR_pos_merge_all_filters_missynstop <- Xr_all_tHDR_pos_merge_all_filters[which(Xr_all_tHDR_pos_merge_all_filters[,'conseq']=='NON_SYNONYMOUS' | Xr_all_tHDR_pos_merge_all_filters[,'conseq']=='SYNONYMOUS' | Xr_all_tHDR_pos_merge_all_filters[,'conseq']=='STOP_GAINED' ),]
Xr_all_tHDR_pos_merge_all_filters_missynstopcs <- Xr_all_tHDR_pos_merge_all_filters[which(Xr_all_tHDR_pos_merge_all_filters[,'conseq']=='NON_SYNONYMOUS' | Xr_all_tHDR_pos_merge_all_filters[,'conseq']=='SYNONYMOUS' | Xr_all_tHDR_pos_merge_all_filters[,'conseq']=='STOP_GAINED' | Xr_all_tHDR_pos_merge_all_filters[,'conseq']=='CANONICAL_SPLICE' ),]
conseq_ord_Xr_all_tHDR_pos_merge_all_filters_missynstop <- Xr_all_tHDR_pos_merge_all_filters_missynstop
conseq_ord_Xr_all_tHDR_pos_merge_all_filters_missynstop$conseq <- factor(conseq_ord_Xr_all_tHDR_pos_merge_all_filters_missynstop$conseq, levels = c('STOP_GAINED','SYNONYMOUS','NON_SYNONYMOUS'))
Xr_all_tHDR_pos_merge_all_filters_missynstopcs <- Xr_all_tHDR_pos_merge_all_filters[which(Xr_all_tHDR_pos_merge_all_filters[,'conseq']=='NON_SYNONYMOUS' | Xr_all_tHDR_pos_merge_all_filters[,'conseq']=='SYNONYMOUS' | Xr_all_tHDR_pos_merge_all_filters[,'conseq']=='STOP_GAINED' | Xr_all_tHDR_pos_merge_all_filters[,'conseq']=='CANONICAL_SPLICE' ),]
conseq_ord_Xr_all_tHDR_pos_merge_all_filters_missynstopcs <- Xr_all_tHDR_pos_merge_all_filters_missynstopcs
conseq_ord_Xr_all_tHDR_pos_merge_all_filters_missynstopcs$conseq <- factor(conseq_ord_Xr_all_tHDR_pos_merge_all_filters_missynstopcs$conseq, levels = c('STOP_GAINED','CANONICAL_SPLICE','SYNONYMOUS','NON_SYNONYMOUS'))
Xr_all_tHDR_pos_merge_all_filters_missynstopcsint <- Xr_all_tHDR_pos_merge_all_filters[which(Xr_all_tHDR_pos_merge_all_filters[,'conseq']=='NON_SYNONYMOUS' | Xr_all_tHDR_pos_merge_all_filters[,'conseq']=='SYNONYMOUS' | Xr_all_tHDR_pos_merge_all_filters[,'conseq']=='STOP_GAINED' | Xr_all_tHDR_pos_merge_all_filters[,'conseq']=='CANONICAL_SPLICE' | Xr_all_tHDR_pos_merge_all_filters[,'conseq']=='INTRONIC' ),]
conseq_ord_Xr_all_tHDR_pos_merge_all_filters_missynstopcsint <- Xr_all_tHDR_pos_merge_all_filters_missynstopcsint
conseq_ord_Xr_all_tHDR_pos_merge_all_filters_missynstopcsint$conseq <- factor(conseq_ord_Xr_all_tHDR_pos_merge_all_filters_missynstopcsint$conseq, levels = c('STOP_GAINED','CANONICAL_SPLICE','SYNONYMOUS','INTRONIC','NON_SYNONYMOUS'))
Xr_all_tHDR_pos_merge_all_filters_missynstopcsintspl <- Xr_all_tHDR_pos_merge_all_filters[which(Xr_all_tHDR_pos_merge_all_filters[,'conseq']=='NON_SYNONYMOUS' | Xr_all_tHDR_pos_merge_all_filters[,'conseq']=='SYNONYMOUS' | Xr_all_tHDR_pos_merge_all_filters[,'conseq']=='STOP_GAINED' | Xr_all_tHDR_pos_merge_all_filters[,'conseq']=='CANONICAL_SPLICE' | Xr_all_tHDR_pos_merge_all_filters[,'conseq']=='INTRONIC' | Xr_all_tHDR_pos_merge_all_filters[,'conseq']=='SPLICE_SITE' ),]
conseq_ord_Xr_all_tHDR_pos_merge_all_filters_missynstopcsintspl <- Xr_all_tHDR_pos_merge_all_filters_missynstopcsintspl
conseq_ord_Xr_all_tHDR_pos_merge_all_filters_missynstopcsintspl$conseq <- factor(conseq_ord_Xr_all_tHDR_pos_merge_all_filters_missynstopcsintspl$conseq, levels = c('STOP_GAINED','CANONICAL_SPLICE','SYNONYMOUS','INTRONIC','SPLICE_SITE','NON_SYNONYMOUS'))
conseq_ord_Xr_all_tHDR_pos_merge_all_filters <- Xr_all_tHDR_pos_merge_all_filters
conseq_ord_Xr_all_tHDR_pos_merge_all_filters$conseq <- factor(conseq_ord_Xr_all_tHDR_pos_merge_all_filters$conseq, levels = c('STOP_GAINED','CANONICAL_SPLICE','SYNONYMOUS','INTRONIC','SPLICE_SITE','5PRIME_UTR','NON_SYNONYMOUS'))
#comparison of different enrichment score metrics across all exons:
Xr_all_tHDR_pos_merge_all_filters_mis_clinvar_p_b <- Xr_all_tHDR_pos_merge_all_filters[which((Xr_all_tHDR_pos_merge_all_filters$conseq == 'NON_SYNONYMOUS' & Xr_all_tHDR_pos_merge_all_filters$clinvar_simple == 'Pathogenic') | (Xr_all_tHDR_pos_merge_all_filters$conseq == 'NON_SYNONYMOUS' & Xr_all_tHDR_pos_merge_all_filters$clinvar_simple == 'Benign')),]
Xr_all_tHDR_pos_merge_all_filters_clinvar_p_b <- Xr_all_tHDR_pos_merge_all_filters[which( Xr_all_tHDR_pos_merge_all_filters$clinvar_simple == 'Pathogenic' | Xr_all_tHDR_pos_merge_all_filters$conseq == 'NON_SYNONYMOUS' & Xr_all_tHDR_pos_merge_all_filters$clinvar_simple == 'Benign'),]
Xr_all_tHDR_pos_merge_all_filters_clinvar_p_b_lp_lb <- Xr_all_tHDR_pos_merge_all_filters[which( Xr_all_tHDR_pos_merge_all_filters$clinvar_simple == 'Pathogenic' | Xr_all_tHDR_pos_merge_all_filters$conseq == 'NON_SYNONYMOUS' & Xr_all_tHDR_pos_merge_all_filters$clinvar_simple == 'Benign' | Xr_all_tHDR_pos_merge_all_filters$clinvar_simple == 'Likely pathogenic' | Xr_all_tHDR_pos_merge_all_filters$clinvar_simple == 'Likely benign'),]
clinvar_ord_Xr_all_tHDR_pos_merge_all_filters_clinvar_p_b_lp_lb <- Xr_all_tHDR_pos_merge_all_filters_clinvar_p_b_lp_lb
clinvar_ord_Xr_all_tHDR_pos_merge_all_filters_clinvar_p_b_lp_lb$clinvar_simple <- factor(clinvar_ord_Xr_all_tHDR_pos_merge_all_filters_clinvar_p_b_lp_lb$clinvar_simple, levels = c("Pathogenic","Likely pathogenic","Likely benign","Benign","Uncertain significance","Conflicting interpretations of pathogenicity","absent","REF"))
#all missense variants ordered by clinvar
Xr_all_tHDR_pos_merge_all_filters_mis <- Xr_all_tHDR_pos_merge_all_filters[which((Xr_all_tHDR_pos_merge_all_filters$conseq == 'NON_SYNONYMOUS')),]
clinvar_ord_Xr_all_tHDR_pos_merge_all_filters_mis <- Xr_all_tHDR_pos_merge_all_filters_mis
clinvar_ord_Xr_all_tHDR_pos_merge_all_filters_mis$clinvar_simple <- factor(clinvar_ord_Xr_all_tHDR_pos_merge_all_filters_mis$clinvar_simple, levels = c("Pathogenic","Likely pathogenic","Likely benign","Benign","Uncertain significance","Conflicting interpretations of pathogenicity","absent","REF"))
#all variants ordered by ClinVar annotation
clinvar_ord_Xr_all_tHDR_pos_merge_all_filters <- Xr_all_tHDR_pos_merge_all_filters
clinvar_ord_Xr_all_tHDR_pos_merge_all_filters$clinvar_simple <- factor(clinvar_ord_Xr_all_tHDR_pos_merge_all_filters$clinvar_simple, levels = c("Pathogenic","Likely pathogenic","Likely benign","Benign","Uncertain significance","Conflicting interpretations of pathogenicity","absent","REF"))
##NEED TO FILTER THESE CALL SETS IN FINAL ANALYSIS BASED ON GLOBAL FILTERS ABOVE, and perform global min/max normalization and scale each exon by median nonsense depletion across all.
X2r_final_df <- Xr_all_tHDR_pos_merge_all_filters[which(Xr_all_tHDR_pos_merge_all_filters$exon == 'X2'),]
X3r_final_df <- Xr_all_tHDR_pos_merge_all_filters[which(Xr_all_tHDR_pos_merge_all_filters$exon == 'X3'),]
X4r_final_df <- Xr_all_tHDR_pos_merge_all_filters[which(Xr_all_tHDR_pos_merge_all_filters$exon == 'X4'),]
X5r_final_df <- Xr_all_tHDR_pos_merge_all_filters[which(Xr_all_tHDR_pos_merge_all_filters$exon == 'X5'),]
X15r_final_df <- Xr_all_tHDR_pos_merge_all_filters[which(Xr_all_tHDR_pos_merge_all_filters$exon == 'X15'),]
X16r_final_df <- Xr_all_tHDR_pos_merge_all_filters[which(Xr_all_tHDR_pos_merge_all_filters$exon == 'X16'),]
X17r_final_df <- Xr_all_tHDR_pos_merge_all_filters[which(Xr_all_tHDR_pos_merge_all_filters$exon == 'X17'),]
X18r_final_df <- Xr_all_tHDR_pos_merge_all_filters[which(Xr_all_tHDR_pos_merge_all_filters$exon == 'X18'),]
X19r_final_df <- Xr_all_tHDR_pos_merge_all_filters[which(Xr_all_tHDR_pos_merge_all_filters$exon == 'X19'),]
X20r_final_df <- Xr_all_tHDR_pos_merge_all_filters[which(Xr_all_tHDR_pos_merge_all_filters$exon == 'X20'),]
X21r_final_df <- Xr_all_tHDR_pos_merge_all_filters[which(Xr_all_tHDR_pos_merge_all_filters$exon == 'X21'),]
X22r_final_df <- Xr_all_tHDR_pos_merge_all_filters[which(Xr_all_tHDR_pos_merge_all_filters$exon == 'X22'),]
X23r_final_df <- Xr_all_tHDR_pos_merge_all_filters[which(Xr_all_tHDR_pos_merge_all_filters$exon == 'X23'),]
X2r_final_exon_df <- X2r_final_df[which(X2r_final_df[,'cDNApos'] !='REF' & X2r_final_df[,'cDNApos']!='NA'),]
X3r_final_exon_df <- X3r_final_df[which(X3r_final_df[,'cDNApos'] !='REF' & X3r_final_df[,'cDNApos']!='NA'),]
X4r_final_exon_df <- X4r_final_df[which(X4r_final_df[,'cDNApos'] !='REF' & X4r_final_df[,'cDNApos']!='NA'),]
X5r_final_exon_df <- X5r_final_df[which(X5r_final_df[,'cDNApos'] !='REF' & X5r_final_df[,'cDNApos']!='NA'),]
X15r_final_exon_df <- X15r_final_df[which(X15r_final_df[,'cDNApos'] !='REF' & X15r_final_df[,'cDNApos']!='NA'),]
X16r_final_exon_df <- X16r_final_df[which(X16r_final_df[,'cDNApos'] !='REF' & X16r_final_df[,'cDNApos']!='NA'),]
X17r_final_exon_df <- X17r_final_df[which(X17r_final_df[,'cDNApos'] !='REF' & X17r_final_df[,'cDNApos']!='NA'),]
X18r_final_exon_df <- X18r_final_df[which(X18r_final_df[,'cDNApos'] !='REF' & X18r_final_df[,'cDNApos']!='NA'),]
X19r_final_exon_df <- X19r_final_df[which(X19r_final_df[,'cDNApos'] !='REF' & X19r_final_df[,'cDNApos']!='NA'),]
X20r_final_exon_df <- X20r_final_df[which(X20r_final_df[,'cDNApos'] !='REF' & X20r_final_df[,'cDNApos']!='NA'),]
X21r_final_exon_df <- X21r_final_df[which(X21r_final_df[,'cDNApos'] !='REF' & X21r_final_df[,'cDNApos']!='NA'),]
X22r_final_exon_df <- X22r_final_df[which(X22r_final_df[,'cDNApos'] !='REF' & X22r_final_df[,'cDNApos']!='NA'),]
X23r_final_exon_df <- X23r_final_df[which(X23r_final_df[,'cDNApos'] !='REF' & X23r_final_df[,'cDNApos']!='NA'),]
#plots for RNA analysis!
require(gridExtra)
#X2
#same plots with cDNA position instead of CDSpos
#rna_pre ratio across replicates:
#rna vs. pre by replicate, r1
#rna vs. pre by replicate, r2
#average rna vs. average pre
#which correlates best to pre-ratios?
cor(log2(X2r_final_exon_df$tHDR_pre_pseudo_freq),log2(X2r_final_exon_df$tHDR_rna_pseudo_freq),method='spearman')
cor(log2(X2r_final_exon_df$r2_tHDR_pre_pseudo_freq),log2(X2r_final_exon_df$r2_tHDR_rna_pseudo_freq),method='spearman')
cor(log2(X2r_final_exon_df$tHDR_pre_pseudo_freq/2+X2r_final_exon_df$r2_tHDR_pre_pseudo_freq/2),log2(X2r_final_exon_df$tHDR_rna_pseudo_freq/2+X2r_final_exon_df$r2_tHDR_rna_pseudo_freq/2),method='spearman')
#X3
#rna_pre ratio across replicates:
#rna vs. pre by replicate, r1
#rna vs. pre by replicate, r2
#average rna vs. average pre
#which correlates best to pre-ratios?
cor(log2(X3r_final_exon_df$tHDR_pre_pseudo_freq),log2(X3r_final_exon_df$tHDR_rna_pseudo_freq),method='spearman')
cor(log2(X3r_final_exon_df$r2_tHDR_pre_pseudo_freq),log2(X3r_final_exon_df$r2_tHDR_rna_pseudo_freq),method='spearman')
cor(log2(X3r_final_exon_df$tHDR_pre_pseudo_freq/2+X3r_final_exon_df$r2_tHDR_pre_pseudo_freq/2),log2(X3r_final_exon_df$tHDR_rna_pseudo_freq/2+X3r_final_exon_df$r2_tHDR_rna_pseudo_freq/2),method='spearman')
#X4
#rna_pre ratio across replicates:
#rna vs. pre by replicate, r1
#rna vs. pre by replicate, r2
#average rna vs. average pre
#which correlates best to pre-ratios?
cor(log2(X4r_final_exon_df$tHDR_pre_pseudo_freq),log2(X4r_final_exon_df$tHDR_rna_pseudo_freq),method='spearman')
cor(log2(X4r_final_exon_df$r2_tHDR_pre_pseudo_freq),log2(X4r_final_exon_df$r2_tHDR_rna_pseudo_freq),method='spearman')
cor(log2(X4r_final_exon_df$tHDR_pre_pseudo_freq/2+X4r_final_exon_df$r2_tHDR_pre_pseudo_freq/2),log2(X4r_final_exon_df$tHDR_rna_pseudo_freq/2+X4r_final_exon_df$r2_tHDR_rna_pseudo_freq/2),method='spearman')
#X5
#rna_pre ratio across replicates:
#rna vs. pre by replicate, r1
#rna vs. pre by replicate, r2
#average rna vs. average pre
#which correlates best to pre-ratios?
cor(log2(X5r_final_exon_df$tHDR_pre_pseudo_freq),log2(X5r_final_exon_df$tHDR_rna_pseudo_freq),method='spearman')
cor(log2(X5r_final_exon_df$r2_tHDR_pre_pseudo_freq),log2(X5r_final_exon_df$r2_tHDR_rna_pseudo_freq),method='spearman')
cor(log2(X5r_final_exon_df$tHDR_pre_pseudo_freq/2+X5r_final_exon_df$r2_tHDR_pre_pseudo_freq/2),log2(X5r_final_exon_df$tHDR_rna_pseudo_freq/2+X5r_final_exon_df$r2_tHDR_rna_pseudo_freq/2),method='spearman')
#X15
#rna_pre ratio across replicates:
#rna vs. pre by replicate, r1
#rna vs. pre by replicate, r2
#average rna vs. average pre
#which correlates best to pre-ratios?
cor(log2(X15r_final_exon_df$tHDR_pre_pseudo_freq),log2(X15r_final_exon_df$tHDR_rna_pseudo_freq),method='spearman')
cor(log2(X15r_final_exon_df$r2_tHDR_pre_pseudo_freq),log2(X15r_final_exon_df$r2_tHDR_rna_pseudo_freq),method='spearman')
cor(log2(X15r_final_exon_df$tHDR_pre_pseudo_freq/2+X15r_final_exon_df$r2_tHDR_pre_pseudo_freq/2),log2(X15r_final_exon_df$tHDR_rna_pseudo_freq/2+X15r_final_exon_df$r2_tHDR_rna_pseudo_freq/2),method='spearman')
#X16
#rna_pre ratio across replicates:
#rna vs. pre by replicate, r1
#rna vs. pre by replicate, r2
#average rna vs. average pre
#which correlates best to pre-ratios?
cor(log2(X16r_final_exon_df$tHDR_pre_pseudo_freq),log2(X16r_final_exon_df$tHDR_rna_pseudo_freq),method='spearman')
cor(log2(X16r_final_exon_df$r2_tHDR_pre_pseudo_freq),log2(X16r_final_exon_df$r2_tHDR_rna_pseudo_freq),method='spearman')
cor(log2(X16r_final_exon_df$tHDR_pre_pseudo_freq/2+X16r_final_exon_df$r2_tHDR_pre_pseudo_freq/2),log2(X16r_final_exon_df$tHDR_rna_pseudo_freq/2+X16r_final_exon_df$r2_tHDR_rna_pseudo_freq/2),method='spearman')
#X17
#rna_pre ratio across replicates:
#rna vs. pre by replicate, r1
#rna vs. pre by replicate, r2
#average rna vs. average pre
#which correlates best to pre-ratios?
cor(log2(X17r_final_exon_df$tHDR_pre_pseudo_freq),log2(X17r_final_exon_df$tHDR_rna_pseudo_freq),method='spearman')
cor(log2(X17r_final_exon_df$r2_tHDR_pre_pseudo_freq),log2(X17r_final_exon_df$r2_tHDR_rna_pseudo_freq),method='spearman')
cor(log2(X17r_final_exon_df$tHDR_pre_pseudo_freq/2+X17r_final_exon_df$r2_tHDR_pre_pseudo_freq/2),log2(X17r_final_exon_df$tHDR_rna_pseudo_freq/2+X17r_final_exon_df$r2_tHDR_rna_pseudo_freq/2),method='spearman')
#X18
#rna_pre ratio across replicates:
#rna vs. pre by replicate, r1
#rna vs. pre by replicate, r2
#average rna vs. average pre
#which correlates best to pre-ratios?
cor(log2(X18r_final_exon_df$tHDR_pre_pseudo_freq),log2(X18r_final_exon_df$tHDR_rna_pseudo_freq),method='spearman')
cor(log2(X18r_final_exon_df$r2_tHDR_pre_pseudo_freq),log2(X18r_final_exon_df$r2_tHDR_rna_pseudo_freq),method='spearman')
cor(log2(X18r_final_exon_df$tHDR_pre_pseudo_freq/2+X18r_final_exon_df$r2_tHDR_pre_pseudo_freq/2),log2(X18r_final_exon_df$tHDR_rna_pseudo_freq/2+X18r_final_exon_df$r2_tHDR_rna_pseudo_freq/2),method='spearman')
#X19
#modified code to scale limits -- excludes the PAM points
#rna_pre ratio across replicates:
#rna vs. pre by replicate, r1
#rna vs. pre by replicate, r2
#average rna vs. average pre
#which correlates best to pre-ratios?
cor(log2(X19r_final_exon_df$tHDR_pre_pseudo_freq),log2(X19r_final_exon_df$tHDR_rna_pseudo_freq),method='spearman')
cor(log2(X19r_final_exon_df$r2_tHDR_pre_pseudo_freq),log2(X19r_final_exon_df$r2_tHDR_rna_pseudo_freq),method='spearman')
cor(log2(X19r_final_exon_df$tHDR_pre_pseudo_freq/2+X19r_final_exon_df$r2_tHDR_pre_pseudo_freq/2),log2(X19r_final_exon_df$tHDR_rna_pseudo_freq/2+X19r_final_exon_df$r2_tHDR_rna_pseudo_freq/2),method='spearman')
#X20
#rna_pre ratio across replicates:
#rna vs. pre by replicate, r1
#rna vs. pre by replicate, r2
#average rna vs. average pre
#which correlates best to pre-ratios?
cor(log2(X20r_final_exon_df$tHDR_pre_pseudo_freq),log2(X20r_final_exon_df$tHDR_rna_pseudo_freq),method='spearman')
cor(log2(X20r_final_exon_df$r2_tHDR_pre_pseudo_freq),log2(X20r_final_exon_df$r2_tHDR_rna_pseudo_freq),method='spearman')
cor(log2(X20r_final_exon_df$tHDR_pre_pseudo_freq/2+X20r_final_exon_df$r2_tHDR_pre_pseudo_freq/2),log2(X20r_final_exon_df$tHDR_rna_pseudo_freq/2+X20r_final_exon_df$r2_tHDR_rna_pseudo_freq/2),method='spearman')
#X21
#rna_pre ratio across replicates:
#rna vs. pre by replicate, r1
#rna vs. pre by replicate, r2
#average rna vs. average pre
#which correlates best to pre-ratios?
cor(log2(X21r_final_exon_df$tHDR_pre_pseudo_freq),log2(X21r_final_exon_df$tHDR_rna_pseudo_freq),method='spearman')
cor(log2(X21r_final_exon_df$r2_tHDR_pre_pseudo_freq),log2(X21r_final_exon_df$r2_tHDR_rna_pseudo_freq),method='spearman')
cor(log2(X21r_final_exon_df$tHDR_pre_pseudo_freq/2+X21r_final_exon_df$r2_tHDR_pre_pseudo_freq/2),log2(X21r_final_exon_df$tHDR_rna_pseudo_freq/2+X21r_final_exon_df$r2_tHDR_rna_pseudo_freq/2),method='spearman')
#X22
#rna_pre ratio across replicates:
#rna vs. pre by replicate, r1
#rna vs. pre by replicate, r2
#average rna vs. average pre
#which correlates best to pre-ratios?
cor(log2(X22r_final_exon_df$tHDR_pre_pseudo_freq),log2(X22r_final_exon_df$tHDR_rna_pseudo_freq),method='spearman')
cor(log2(X22r_final_exon_df$r2_tHDR_pre_pseudo_freq),log2(X22r_final_exon_df$r2_tHDR_rna_pseudo_freq),method='spearman')
cor(log2(X22r_final_exon_df$tHDR_pre_pseudo_freq/2+X22r_final_exon_df$r2_tHDR_pre_pseudo_freq/2),log2(X22r_final_exon_df$tHDR_rna_pseudo_freq/2+X22r_final_exon_df$r2_tHDR_rna_pseudo_freq/2),method='spearman')
#X23
#rna_pre ratio across replicates:
#rna vs. pre by replicate, r1
#rna vs. pre by replicate, r2
#average rna vs. average pre
#which correlates best to pre-ratios?
cor(log2(X23r_final_exon_df$tHDR_pre_pseudo_freq),log2(X23r_final_exon_df$tHDR_rna_pseudo_freq),method='spearman')
cor(log2(X23r_final_exon_df$r2_tHDR_pre_pseudo_freq),log2(X23r_final_exon_df$r2_tHDR_rna_pseudo_freq),method='spearman')
cor(log2(X23r_final_exon_df$tHDR_pre_pseudo_freq/2+X23r_final_exon_df$r2_tHDR_pre_pseudo_freq/2),log2(X23r_final_exon_df$tHDR_rna_pseudo_freq/2+X23r_final_exon_df$r2_tHDR_rna_pseudo_freq/2),method='spearman')
### end of RNA section
# add a new column to:
#compute the exonic position of each variant (make a string with negative or positive annotation instead of NA --> will have to order this to be able to plot (plot one order, and then add vector of strings for labels, maybe?)
# clinvar nucleotide positions / other categorical translations between data sets...
# conseq without 'splice' but either exonic or intronic
#FINAL NORMALIZATION SECTION (SHOULD COME BEFORE RNA PLOTS above)
# min/max normalization on filtered data...
#use conseq or conseq_simp to not include splice?
#general formula: b/(a-c)*(A-C) where b is snv, a is exon med syn, c is exon med nonsense, A is global med syn, C is global med nonsense.
#do this first for the repl. mean fits and scores :
Xr_all_tHDR_post_lib_loess_r1r2_median_syn <- median(Xr_all_tHDR_pos_merge_all_filters[which(Xr_all_tHDR_pos_merge_all_filters$conseq == 'SYNONYMOUS'),c('r1r2_tHDR_post_lib_loess_r1r2')])
Xr_all_tHDR_post_lib_loess_r1r2_median_ns <- median(Xr_all_tHDR_pos_merge_all_filters[which(Xr_all_tHDR_pos_merge_all_filters$conseq == 'STOP_GAINED'),c('r1r2_tHDR_post_lib_loess_r1r2')])
X2_tHDR_post_lib_loess_r1r2_median_syn <- median(X2r_final_df[which(X2r_final_df$conseq == 'SYNONYMOUS'),c('r1r2_tHDR_post_lib_loess_r1r2')])
X2_tHDR_post_lib_loess_r1r2_median_ns <- median(X2r_final_df[which(X2r_final_df$conseq == 'STOP_GAINED'),c('r1r2_tHDR_post_lib_loess_r1r2')])
X2r_final_df$tHDR_post_lib_loess_r1r2_sns_norm <- (X2r_final_df$r1r2_tHDR_post_lib_loess_r1r2/(X2_tHDR_post_lib_loess_r1r2_median_syn-X2_tHDR_post_lib_loess_r1r2_median_ns))*(Xr_all_tHDR_post_lib_loess_r1r2_median_syn-Xr_all_tHDR_post_lib_loess_r1r2_median_ns)
X3_tHDR_post_lib_loess_r1r2_median_syn <- median(X3r_final_df[which(X3r_final_df$conseq == 'SYNONYMOUS'),c('r1r2_tHDR_post_lib_loess_r1r2')])
X3_tHDR_post_lib_loess_r1r2_median_ns <- median(X3r_final_df[which(X3r_final_df$conseq == 'STOP_GAINED'),c('r1r2_tHDR_post_lib_loess_r1r2')])
X3r_final_df$tHDR_post_lib_loess_r1r2_sns_norm <- (X3r_final_df$r1r2_tHDR_post_lib_loess_r1r2/(X3_tHDR_post_lib_loess_r1r2_median_syn-X3_tHDR_post_lib_loess_r1r2_median_ns))*(Xr_all_tHDR_post_lib_loess_r1r2_median_syn-Xr_all_tHDR_post_lib_loess_r1r2_median_ns)
X4_tHDR_post_lib_loess_r1r2_median_syn <- median(X4r_final_df[which(X4r_final_df$conseq == 'SYNONYMOUS'),c('r1r2_tHDR_post_lib_loess_r1r2')])
X4_tHDR_post_lib_loess_r1r2_median_ns <- median(X4r_final_df[which(X4r_final_df$conseq == 'STOP_GAINED'),c('r1r2_tHDR_post_lib_loess_r1r2')])
X4r_final_df$tHDR_post_lib_loess_r1r2_sns_norm <- (X4r_final_df$r1r2_tHDR_post_lib_loess_r1r2/(X4_tHDR_post_lib_loess_r1r2_median_syn-X4_tHDR_post_lib_loess_r1r2_median_ns))*(Xr_all_tHDR_post_lib_loess_r1r2_median_syn-Xr_all_tHDR_post_lib_loess_r1r2_median_ns)
X5_tHDR_post_lib_loess_r1r2_median_syn <- median(X5r_final_df[which(X5r_final_df$conseq == 'SYNONYMOUS'),c('r1r2_tHDR_post_lib_loess_r1r2')])
X5_tHDR_post_lib_loess_r1r2_median_ns <- median(X5r_final_df[which(X5r_final_df$conseq == 'STOP_GAINED'),c('r1r2_tHDR_post_lib_loess_r1r2')])
X5r_final_df$tHDR_post_lib_loess_r1r2_sns_norm <- (X5r_final_df$r1r2_tHDR_post_lib_loess_r1r2/(X5_tHDR_post_lib_loess_r1r2_median_syn-X5_tHDR_post_lib_loess_r1r2_median_ns))*(Xr_all_tHDR_post_lib_loess_r1r2_median_syn-Xr_all_tHDR_post_lib_loess_r1r2_median_ns)
X15_tHDR_post_lib_loess_r1r2_median_syn <- median(X15r_final_df[which(X15r_final_df$conseq == 'SYNONYMOUS'),c('r1r2_tHDR_post_lib_loess_r1r2')])
X15_tHDR_post_lib_loess_r1r2_median_ns <- median(X15r_final_df[which(X15r_final_df$conseq == 'STOP_GAINED'),c('r1r2_tHDR_post_lib_loess_r1r2')])
X15r_final_df$tHDR_post_lib_loess_r1r2_sns_norm <- (X15r_final_df$r1r2_tHDR_post_lib_loess_r1r2/(X15_tHDR_post_lib_loess_r1r2_median_syn-X15_tHDR_post_lib_loess_r1r2_median_ns))*(Xr_all_tHDR_post_lib_loess_r1r2_median_syn-Xr_all_tHDR_post_lib_loess_r1r2_median_ns)
X16_tHDR_post_lib_loess_r1r2_median_syn <- median(X16r_final_df[which(X16r_final_df$conseq == 'SYNONYMOUS'),c('r1r2_tHDR_post_lib_loess_r1r2')])
X16_tHDR_post_lib_loess_r1r2_median_ns <- median(X16r_final_df[which(X16r_final_df$conseq == 'STOP_GAINED'),c('r1r2_tHDR_post_lib_loess_r1r2')])
X16r_final_df$tHDR_post_lib_loess_r1r2_sns_norm <- (X16r_final_df$r1r2_tHDR_post_lib_loess_r1r2/(X16_tHDR_post_lib_loess_r1r2_median_syn-X16_tHDR_post_lib_loess_r1r2_median_ns))*(Xr_all_tHDR_post_lib_loess_r1r2_median_syn-Xr_all_tHDR_post_lib_loess_r1r2_median_ns)
X17_tHDR_post_lib_loess_r1r2_median_syn <- median(X17r_final_df[which(X17r_final_df$conseq == 'SYNONYMOUS'),c('r1r2_tHDR_post_lib_loess_r1r2')])
X17_tHDR_post_lib_loess_r1r2_median_ns <- median(X17r_final_df[which(X17r_final_df$conseq == 'STOP_GAINED'),c('r1r2_tHDR_post_lib_loess_r1r2')])
X17r_final_df$tHDR_post_lib_loess_r1r2_sns_norm <- (X17r_final_df$r1r2_tHDR_post_lib_loess_r1r2/(X17_tHDR_post_lib_loess_r1r2_median_syn-X17_tHDR_post_lib_loess_r1r2_median_ns))*(Xr_all_tHDR_post_lib_loess_r1r2_median_syn-Xr_all_tHDR_post_lib_loess_r1r2_median_ns)
X18_tHDR_post_lib_loess_r1r2_median_syn <- median(X18r_final_df[which(X18r_final_df$conseq == 'SYNONYMOUS'),c('r1r2_tHDR_post_lib_loess_r1r2')])
X18_tHDR_post_lib_loess_r1r2_median_ns <- median(X18r_final_df[which(X18r_final_df$conseq == 'STOP_GAINED'),c('r1r2_tHDR_post_lib_loess_r1r2')])
X18r_final_df$tHDR_post_lib_loess_r1r2_sns_norm <- (X18r_final_df$r1r2_tHDR_post_lib_loess_r1r2/(X18_tHDR_post_lib_loess_r1r2_median_syn-X18_tHDR_post_lib_loess_r1r2_median_ns))*(Xr_all_tHDR_post_lib_loess_r1r2_median_syn-Xr_all_tHDR_post_lib_loess_r1r2_median_ns)
X19_tHDR_post_lib_loess_r1r2_median_syn <- median(X19r_final_df[which(X19r_final_df$conseq == 'SYNONYMOUS'),c('r1r2_tHDR_post_lib_loess_r1r2')])
X19_tHDR_post_lib_loess_r1r2_median_ns <- median(X19r_final_df[which(X19r_final_df$conseq == 'STOP_GAINED'),c('r1r2_tHDR_post_lib_loess_r1r2')])
X19r_final_df$tHDR_post_lib_loess_r1r2_sns_norm <- (X19r_final_df$r1r2_tHDR_post_lib_loess_r1r2/(X19_tHDR_post_lib_loess_r1r2_median_syn-X19_tHDR_post_lib_loess_r1r2_median_ns))*(Xr_all_tHDR_post_lib_loess_r1r2_median_syn-Xr_all_tHDR_post_lib_loess_r1r2_median_ns)
X20_tHDR_post_lib_loess_r1r2_median_syn <- median(X20r_final_df[which(X20r_final_df$conseq == 'SYNONYMOUS'),c('r1r2_tHDR_post_lib_loess_r1r2')])
X20_tHDR_post_lib_loess_r1r2_median_ns <- median(X20r_final_df[which(X20r_final_df$conseq == 'STOP_GAINED'),c('r1r2_tHDR_post_lib_loess_r1r2')])
X20r_final_df$tHDR_post_lib_loess_r1r2_sns_norm <- (X20r_final_df$r1r2_tHDR_post_lib_loess_r1r2/(X20_tHDR_post_lib_loess_r1r2_median_syn-X20_tHDR_post_lib_loess_r1r2_median_ns))*(Xr_all_tHDR_post_lib_loess_r1r2_median_syn-Xr_all_tHDR_post_lib_loess_r1r2_median_ns)
X21_tHDR_post_lib_loess_r1r2_median_syn <- median(X21r_final_df[which(X21r_final_df$conseq == 'SYNONYMOUS'),c('r1r2_tHDR_post_lib_loess_r1r2')])
X21_tHDR_post_lib_loess_r1r2_median_ns <- median(X21r_final_df[which(X21r_final_df$conseq == 'STOP_GAINED'),c('r1r2_tHDR_post_lib_loess_r1r2')])
X21r_final_df$tHDR_post_lib_loess_r1r2_sns_norm <- (X21r_final_df$r1r2_tHDR_post_lib_loess_r1r2/(X21_tHDR_post_lib_loess_r1r2_median_syn-X21_tHDR_post_lib_loess_r1r2_median_ns))*(Xr_all_tHDR_post_lib_loess_r1r2_median_syn-Xr_all_tHDR_post_lib_loess_r1r2_median_ns)
X22_tHDR_post_lib_loess_r1r2_median_syn <- median(X22r_final_df[which(X22r_final_df$conseq == 'SYNONYMOUS'),c('r1r2_tHDR_post_lib_loess_r1r2')])
X22_tHDR_post_lib_loess_r1r2_median_ns <- median(X22r_final_df[which(X22r_final_df$conseq == 'STOP_GAINED'),c('r1r2_tHDR_post_lib_loess_r1r2')])
X22r_final_df$tHDR_post_lib_loess_r1r2_sns_norm <- (X22r_final_df$r1r2_tHDR_post_lib_loess_r1r2/(X22_tHDR_post_lib_loess_r1r2_median_syn-X22_tHDR_post_lib_loess_r1r2_median_ns))*(Xr_all_tHDR_post_lib_loess_r1r2_median_syn-Xr_all_tHDR_post_lib_loess_r1r2_median_ns)
X23_tHDR_post_lib_loess_r1r2_median_syn <- median(X23r_final_df[which(X23r_final_df$conseq == 'SYNONYMOUS'),c('r1r2_tHDR_post_lib_loess_r1r2')])
X23_tHDR_post_lib_loess_r1r2_median_ns <- median(X23r_final_df[which(X23r_final_df$conseq == 'STOP_GAINED'),c('r1r2_tHDR_post_lib_loess_r1r2')])
X23r_final_df$tHDR_post_lib_loess_r1r2_sns_norm <- (X23r_final_df$r1r2_tHDR_post_lib_loess_r1r2/(X23_tHDR_post_lib_loess_r1r2_median_syn-X23_tHDR_post_lib_loess_r1r2_median_ns))*(Xr_all_tHDR_post_lib_loess_r1r2_median_syn-Xr_all_tHDR_post_lib_loess_r1r2_median_ns)
#repeat the above for the e.sns replicate means... what does this look like keeping the replicate normalized scored separate?
Xr_all_tHDR_post_lib_loess_e.sns_r1r2_median_syn <- median(Xr_all_tHDR_pos_merge_all_filters[which(Xr_all_tHDR_pos_merge_all_filters$conseq == 'SYNONYMOUS'),c('r_tHDR_post_lib_loess_e.sns_r1r2_mean')])
Xr_all_tHDR_post_lib_loess_e.sns_r1r2_median_ns <- median(Xr_all_tHDR_pos_merge_all_filters[which(Xr_all_tHDR_pos_merge_all_filters$conseq == 'STOP_GAINED'),c('r_tHDR_post_lib_loess_e.sns_r1r2_mean')])
X2_tHDR_post_lib_loess_e.sns_r1r2_median_syn <- median(X2r_final_df[which(X2r_final_df$conseq == 'SYNONYMOUS'),c('r_tHDR_post_lib_loess_e.sns_r1r2_mean')])
X2_tHDR_post_lib_loess_e.sns_r1r2_median_ns <- median(X2r_final_df[which(X2r_final_df$conseq == 'STOP_GAINED'),c('r_tHDR_post_lib_loess_e.sns_r1r2_mean')])
X2r_final_df$tHDR_post_lib_loess_e.sns_r1r2_sns_norm <- (X2r_final_df$r_tHDR_post_lib_loess_e.sns_r1r2_mean/(X2_tHDR_post_lib_loess_e.sns_r1r2_median_syn-X2_tHDR_post_lib_loess_e.sns_r1r2_median_ns))*(Xr_all_tHDR_post_lib_loess_e.sns_r1r2_median_syn-Xr_all_tHDR_post_lib_loess_e.sns_r1r2_median_ns)
X3_tHDR_post_lib_loess_e.sns_r1r2_median_syn <- median(X3r_final_df[which(X3r_final_df$conseq == 'SYNONYMOUS'),c('r_tHDR_post_lib_loess_e.sns_r1r2_mean')])
X3_tHDR_post_lib_loess_e.sns_r1r2_median_ns <- median(X3r_final_df[which(X3r_final_df$conseq == 'STOP_GAINED'),c('r_tHDR_post_lib_loess_e.sns_r1r2_mean')])
X3r_final_df$tHDR_post_lib_loess_e.sns_r1r2_sns_norm <- (X3r_final_df$r_tHDR_post_lib_loess_e.sns_r1r2_mean/(X3_tHDR_post_lib_loess_e.sns_r1r2_median_syn-X3_tHDR_post_lib_loess_e.sns_r1r2_median_ns))*(Xr_all_tHDR_post_lib_loess_e.sns_r1r2_median_syn-Xr_all_tHDR_post_lib_loess_e.sns_r1r2_median_ns)
X4_tHDR_post_lib_loess_e.sns_r1r2_median_syn <- median(X4r_final_df[which(X4r_final_df$conseq == 'SYNONYMOUS'),c('r_tHDR_post_lib_loess_e.sns_r1r2_mean')])
X4_tHDR_post_lib_loess_e.sns_r1r2_median_ns <- median(X4r_final_df[which(X4r_final_df$conseq == 'STOP_GAINED'),c('r_tHDR_post_lib_loess_e.sns_r1r2_mean')])
X4r_final_df$tHDR_post_lib_loess_e.sns_r1r2_sns_norm <- (X4r_final_df$r_tHDR_post_lib_loess_e.sns_r1r2_mean/(X4_tHDR_post_lib_loess_e.sns_r1r2_median_syn-X4_tHDR_post_lib_loess_e.sns_r1r2_median_ns))*(Xr_all_tHDR_post_lib_loess_e.sns_r1r2_median_syn-Xr_all_tHDR_post_lib_loess_e.sns_r1r2_median_ns)
X5_tHDR_post_lib_loess_e.sns_r1r2_median_syn <- median(X5r_final_df[which(X5r_final_df$conseq == 'SYNONYMOUS'),c('r_tHDR_post_lib_loess_e.sns_r1r2_mean')])
X5_tHDR_post_lib_loess_e.sns_r1r2_median_ns <- median(X5r_final_df[which(X5r_final_df$conseq == 'STOP_GAINED'),c('r_tHDR_post_lib_loess_e.sns_r1r2_mean')])
X5r_final_df$tHDR_post_lib_loess_e.sns_r1r2_sns_norm <- (X5r_final_df$r_tHDR_post_lib_loess_e.sns_r1r2_mean/(X5_tHDR_post_lib_loess_e.sns_r1r2_median_syn-X5_tHDR_post_lib_loess_e.sns_r1r2_median_ns))*(Xr_all_tHDR_post_lib_loess_e.sns_r1r2_median_syn-Xr_all_tHDR_post_lib_loess_e.sns_r1r2_median_ns)
X15_tHDR_post_lib_loess_e.sns_r1r2_median_syn <- median(X15r_final_df[which(X15r_final_df$conseq == 'SYNONYMOUS'),c('r_tHDR_post_lib_loess_e.sns_r1r2_mean')])
X15_tHDR_post_lib_loess_e.sns_r1r2_median_ns <- median(X15r_final_df[which(X15r_final_df$conseq == 'STOP_GAINED'),c('r_tHDR_post_lib_loess_e.sns_r1r2_mean')])
X15r_final_df$tHDR_post_lib_loess_e.sns_r1r2_sns_norm <- (X15r_final_df$r_tHDR_post_lib_loess_e.sns_r1r2_mean/(X15_tHDR_post_lib_loess_e.sns_r1r2_median_syn-X15_tHDR_post_lib_loess_e.sns_r1r2_median_ns))*(Xr_all_tHDR_post_lib_loess_e.sns_r1r2_median_syn-Xr_all_tHDR_post_lib_loess_e.sns_r1r2_median_ns)
X16_tHDR_post_lib_loess_e.sns_r1r2_median_syn <- median(X16r_final_df[which(X16r_final_df$conseq == 'SYNONYMOUS'),c('r_tHDR_post_lib_loess_e.sns_r1r2_mean')])
X16_tHDR_post_lib_loess_e.sns_r1r2_median_ns <- median(X16r_final_df[which(X16r_final_df$conseq == 'STOP_GAINED'),c('r_tHDR_post_lib_loess_e.sns_r1r2_mean')])
X16r_final_df$tHDR_post_lib_loess_e.sns_r1r2_sns_norm <- (X16r_final_df$r_tHDR_post_lib_loess_e.sns_r1r2_mean/(X16_tHDR_post_lib_loess_e.sns_r1r2_median_syn-X16_tHDR_post_lib_loess_e.sns_r1r2_median_ns))*(Xr_all_tHDR_post_lib_loess_e.sns_r1r2_median_syn-Xr_all_tHDR_post_lib_loess_e.sns_r1r2_median_ns)
X17_tHDR_post_lib_loess_e.sns_r1r2_median_syn <- median(X17r_final_df[which(X17r_final_df$conseq == 'SYNONYMOUS'),c('r_tHDR_post_lib_loess_e.sns_r1r2_mean')])
X17_tHDR_post_lib_loess_e.sns_r1r2_median_ns <- median(X17r_final_df[which(X17r_final_df$conseq == 'STOP_GAINED'),c('r_tHDR_post_lib_loess_e.sns_r1r2_mean')])
X17r_final_df$tHDR_post_lib_loess_e.sns_r1r2_sns_norm <- (X17r_final_df$r_tHDR_post_lib_loess_e.sns_r1r2_mean/(X17_tHDR_post_lib_loess_e.sns_r1r2_median_syn-X17_tHDR_post_lib_loess_e.sns_r1r2_median_ns))*(Xr_all_tHDR_post_lib_loess_e.sns_r1r2_median_syn-Xr_all_tHDR_post_lib_loess_e.sns_r1r2_median_ns)
X18_tHDR_post_lib_loess_e.sns_r1r2_median_syn <- median(X18r_final_df[which(X18r_final_df$conseq == 'SYNONYMOUS'),c('r_tHDR_post_lib_loess_e.sns_r1r2_mean')])
X18_tHDR_post_lib_loess_e.sns_r1r2_median_ns <- median(X18r_final_df[which(X18r_final_df$conseq == 'STOP_GAINED'),c('r_tHDR_post_lib_loess_e.sns_r1r2_mean')])
X18r_final_df$tHDR_post_lib_loess_e.sns_r1r2_sns_norm <- (X18r_final_df$r_tHDR_post_lib_loess_e.sns_r1r2_mean/(X18_tHDR_post_lib_loess_e.sns_r1r2_median_syn-X18_tHDR_post_lib_loess_e.sns_r1r2_median_ns))*(Xr_all_tHDR_post_lib_loess_e.sns_r1r2_median_syn-Xr_all_tHDR_post_lib_loess_e.sns_r1r2_median_ns)
X19_tHDR_post_lib_loess_e.sns_r1r2_median_syn <- median(X19r_final_df[which(X19r_final_df$conseq == 'SYNONYMOUS'),c('r_tHDR_post_lib_loess_e.sns_r1r2_mean')])
X19_tHDR_post_lib_loess_e.sns_r1r2_median_ns <- median(X19r_final_df[which(X19r_final_df$conseq == 'STOP_GAINED'),c('r_tHDR_post_lib_loess_e.sns_r1r2_mean')])
X19r_final_df$tHDR_post_lib_loess_e.sns_r1r2_sns_norm <- (X19r_final_df$r_tHDR_post_lib_loess_e.sns_r1r2_mean/(X19_tHDR_post_lib_loess_e.sns_r1r2_median_syn-X19_tHDR_post_lib_loess_e.sns_r1r2_median_ns))*(Xr_all_tHDR_post_lib_loess_e.sns_r1r2_median_syn-Xr_all_tHDR_post_lib_loess_e.sns_r1r2_median_ns)
X20_tHDR_post_lib_loess_e.sns_r1r2_median_syn <- median(X20r_final_df[which(X20r_final_df$conseq == 'SYNONYMOUS'),c('r_tHDR_post_lib_loess_e.sns_r1r2_mean')])
X20_tHDR_post_lib_loess_e.sns_r1r2_median_ns <- median(X20r_final_df[which(X20r_final_df$conseq == 'STOP_GAINED'),c('r_tHDR_post_lib_loess_e.sns_r1r2_mean')])
X20r_final_df$tHDR_post_lib_loess_e.sns_r1r2_sns_norm <- (X20r_final_df$r_tHDR_post_lib_loess_e.sns_r1r2_mean/(X20_tHDR_post_lib_loess_e.sns_r1r2_median_syn-X20_tHDR_post_lib_loess_e.sns_r1r2_median_ns))*(Xr_all_tHDR_post_lib_loess_e.sns_r1r2_median_syn-Xr_all_tHDR_post_lib_loess_e.sns_r1r2_median_ns)
X21_tHDR_post_lib_loess_e.sns_r1r2_median_syn <- median(X21r_final_df[which(X21r_final_df$conseq == 'SYNONYMOUS'),c('r_tHDR_post_lib_loess_e.sns_r1r2_mean')])
X21_tHDR_post_lib_loess_e.sns_r1r2_median_ns <- median(X21r_final_df[which(X21r_final_df$conseq == 'STOP_GAINED'),c('r_tHDR_post_lib_loess_e.sns_r1r2_mean')])
X21r_final_df$tHDR_post_lib_loess_e.sns_r1r2_sns_norm <- (X21r_final_df$r_tHDR_post_lib_loess_e.sns_r1r2_mean/(X21_tHDR_post_lib_loess_e.sns_r1r2_median_syn-X21_tHDR_post_lib_loess_e.sns_r1r2_median_ns))*(Xr_all_tHDR_post_lib_loess_e.sns_r1r2_median_syn-Xr_all_tHDR_post_lib_loess_e.sns_r1r2_median_ns)
X22_tHDR_post_lib_loess_e.sns_r1r2_median_syn <- median(X22r_final_df[which(X22r_final_df$conseq == 'SYNONYMOUS'),c('r_tHDR_post_lib_loess_e.sns_r1r2_mean')])
X22_tHDR_post_lib_loess_e.sns_r1r2_median_ns <- median(X22r_final_df[which(X22r_final_df$conseq == 'STOP_GAINED'),c('r_tHDR_post_lib_loess_e.sns_r1r2_mean')])
X22r_final_df$tHDR_post_lib_loess_e.sns_r1r2_sns_norm <- (X22r_final_df$r_tHDR_post_lib_loess_e.sns_r1r2_mean/(X22_tHDR_post_lib_loess_e.sns_r1r2_median_syn-X22_tHDR_post_lib_loess_e.sns_r1r2_median_ns))*(Xr_all_tHDR_post_lib_loess_e.sns_r1r2_median_syn-Xr_all_tHDR_post_lib_loess_e.sns_r1r2_median_ns)
X23_tHDR_post_lib_loess_e.sns_r1r2_median_syn <- median(X23r_final_df[which(X23r_final_df$conseq == 'SYNONYMOUS'),c('r_tHDR_post_lib_loess_e.sns_r1r2_mean')])
X23_tHDR_post_lib_loess_e.sns_r1r2_median_ns <- median(X23r_final_df[which(X23r_final_df$conseq == 'STOP_GAINED'),c('r_tHDR_post_lib_loess_e.sns_r1r2_mean')])
X23r_final_df$tHDR_post_lib_loess_e.sns_r1r2_sns_norm <- (X23r_final_df$r_tHDR_post_lib_loess_e.sns_r1r2_mean/(X23_tHDR_post_lib_loess_e.sns_r1r2_median_syn-X23_tHDR_post_lib_loess_e.sns_r1r2_median_ns))*(Xr_all_tHDR_post_lib_loess_e.sns_r1r2_median_syn-Xr_all_tHDR_post_lib_loess_e.sns_r1r2_median_ns)
#make the same calculations on a per replicate score basis...:
#keeping all scalers as medians of replicate averages (i.e. global syn/ns and per exon syn/ns will be called from medians, but )
X2r_final_df$tHDR_post_lib_loess_e.sns_r1_sns_norm <- (X2r_final_df$r1_tHDR_post_lib_loess_r1_e.sns/(X2_tHDR_post_lib_loess_e.sns_r1r2_median_syn-X2_tHDR_post_lib_loess_e.sns_r1r2_median_ns))*(Xr_all_tHDR_post_lib_loess_e.sns_r1r2_median_syn-Xr_all_tHDR_post_lib_loess_e.sns_r1r2_median_ns)
X2r_final_df$tHDR_post_lib_loess_e.sns_r2_sns_norm <- (X2r_final_df$r2_tHDR_post_lib_loess_r2_e.sns/(X2_tHDR_post_lib_loess_e.sns_r1r2_median_syn-X2_tHDR_post_lib_loess_e.sns_r1r2_median_ns))*(Xr_all_tHDR_post_lib_loess_e.sns_r1r2_median_syn-Xr_all_tHDR_post_lib_loess_e.sns_r1r2_median_ns)
X3r_final_df$tHDR_post_lib_loess_e.sns_r1_sns_norm <- (X3r_final_df$r1_tHDR_post_lib_loess_r1_e.sns/(X3_tHDR_post_lib_loess_e.sns_r1r2_median_syn-X3_tHDR_post_lib_loess_e.sns_r1r2_median_ns))*(Xr_all_tHDR_post_lib_loess_e.sns_r1r2_median_syn-Xr_all_tHDR_post_lib_loess_e.sns_r1r2_median_ns)
X3r_final_df$tHDR_post_lib_loess_e.sns_r2_sns_norm <- (X3r_final_df$r2_tHDR_post_lib_loess_r2_e.sns/(X3_tHDR_post_lib_loess_e.sns_r1r2_median_syn-X3_tHDR_post_lib_loess_e.sns_r1r2_median_ns))*(Xr_all_tHDR_post_lib_loess_e.sns_r1r2_median_syn-Xr_all_tHDR_post_lib_loess_e.sns_r1r2_median_ns)
X4r_final_df$tHDR_post_lib_loess_e.sns_r1_sns_norm <- (X4r_final_df$r1_tHDR_post_lib_loess_r1_e.sns/(X4_tHDR_post_lib_loess_e.sns_r1r2_median_syn-X4_tHDR_post_lib_loess_e.sns_r1r2_median_ns))*(Xr_all_tHDR_post_lib_loess_e.sns_r1r2_median_syn-Xr_all_tHDR_post_lib_loess_e.sns_r1r2_median_ns)
X4r_final_df$tHDR_post_lib_loess_e.sns_r2_sns_norm <- (X4r_final_df$r2_tHDR_post_lib_loess_r2_e.sns/(X4_tHDR_post_lib_loess_e.sns_r1r2_median_syn-X4_tHDR_post_lib_loess_e.sns_r1r2_median_ns))*(Xr_all_tHDR_post_lib_loess_e.sns_r1r2_median_syn-Xr_all_tHDR_post_lib_loess_e.sns_r1r2_median_ns)
X5r_final_df$tHDR_post_lib_loess_e.sns_r1_sns_norm <- (X5r_final_df$r1_tHDR_post_lib_loess_r1_e.sns/(X5_tHDR_post_lib_loess_e.sns_r1r2_median_syn-X5_tHDR_post_lib_loess_e.sns_r1r2_median_ns))*(Xr_all_tHDR_post_lib_loess_e.sns_r1r2_median_syn-Xr_all_tHDR_post_lib_loess_e.sns_r1r2_median_ns)
X5r_final_df$tHDR_post_lib_loess_e.sns_r2_sns_norm <- (X5r_final_df$r2_tHDR_post_lib_loess_r2_e.sns/(X5_tHDR_post_lib_loess_e.sns_r1r2_median_syn-X5_tHDR_post_lib_loess_e.sns_r1r2_median_ns))*(Xr_all_tHDR_post_lib_loess_e.sns_r1r2_median_syn-Xr_all_tHDR_post_lib_loess_e.sns_r1r2_median_ns)
X15r_final_df$tHDR_post_lib_loess_e.sns_r1_sns_norm <- (X15r_final_df$r1_tHDR_post_lib_loess_r1_e.sns/(X15_tHDR_post_lib_loess_e.sns_r1r2_median_syn-X15_tHDR_post_lib_loess_e.sns_r1r2_median_ns))*(Xr_all_tHDR_post_lib_loess_e.sns_r1r2_median_syn-Xr_all_tHDR_post_lib_loess_e.sns_r1r2_median_ns)
X15r_final_df$tHDR_post_lib_loess_e.sns_r2_sns_norm <- (X15r_final_df$r2_tHDR_post_lib_loess_r2_e.sns/(X15_tHDR_post_lib_loess_e.sns_r1r2_median_syn-X15_tHDR_post_lib_loess_e.sns_r1r2_median_ns))*(Xr_all_tHDR_post_lib_loess_e.sns_r1r2_median_syn-Xr_all_tHDR_post_lib_loess_e.sns_r1r2_median_ns)
X16r_final_df$tHDR_post_lib_loess_e.sns_r1_sns_norm <- (X16r_final_df$r1_tHDR_post_lib_loess_r1_e.sns/(X16_tHDR_post_lib_loess_e.sns_r1r2_median_syn-X16_tHDR_post_lib_loess_e.sns_r1r2_median_ns))*(Xr_all_tHDR_post_lib_loess_e.sns_r1r2_median_syn-Xr_all_tHDR_post_lib_loess_e.sns_r1r2_median_ns)
X16r_final_df$tHDR_post_lib_loess_e.sns_r2_sns_norm <- (X16r_final_df$r2_tHDR_post_lib_loess_r2_e.sns/(X16_tHDR_post_lib_loess_e.sns_r1r2_median_syn-X16_tHDR_post_lib_loess_e.sns_r1r2_median_ns))*(Xr_all_tHDR_post_lib_loess_e.sns_r1r2_median_syn-Xr_all_tHDR_post_lib_loess_e.sns_r1r2_median_ns)
X17r_final_df$tHDR_post_lib_loess_e.sns_r1_sns_norm <- (X17r_final_df$r1_tHDR_post_lib_loess_r1_e.sns/(X17_tHDR_post_lib_loess_e.sns_r1r2_median_syn-X17_tHDR_post_lib_loess_e.sns_r1r2_median_ns))*(Xr_all_tHDR_post_lib_loess_e.sns_r1r2_median_syn-Xr_all_tHDR_post_lib_loess_e.sns_r1r2_median_ns)
X17r_final_df$tHDR_post_lib_loess_e.sns_r2_sns_norm <- (X17r_final_df$r2_tHDR_post_lib_loess_r2_e.sns/(X17_tHDR_post_lib_loess_e.sns_r1r2_median_syn-X17_tHDR_post_lib_loess_e.sns_r1r2_median_ns))*(Xr_all_tHDR_post_lib_loess_e.sns_r1r2_median_syn-Xr_all_tHDR_post_lib_loess_e.sns_r1r2_median_ns)
X18r_final_df$tHDR_post_lib_loess_e.sns_r1_sns_norm <- (X18r_final_df$r1_tHDR_post_lib_loess_r1_e.sns/(X18_tHDR_post_lib_loess_e.sns_r1r2_median_syn-X18_tHDR_post_lib_loess_e.sns_r1r2_median_ns))*(Xr_all_tHDR_post_lib_loess_e.sns_r1r2_median_syn-Xr_all_tHDR_post_lib_loess_e.sns_r1r2_median_ns)
X18r_final_df$tHDR_post_lib_loess_e.sns_r2_sns_norm <- (X18r_final_df$r2_tHDR_post_lib_loess_r2_e.sns/(X18_tHDR_post_lib_loess_e.sns_r1r2_median_syn-X18_tHDR_post_lib_loess_e.sns_r1r2_median_ns))*(Xr_all_tHDR_post_lib_loess_e.sns_r1r2_median_syn-Xr_all_tHDR_post_lib_loess_e.sns_r1r2_median_ns)
X19r_final_df$tHDR_post_lib_loess_e.sns_r1_sns_norm <- (X19r_final_df$r1_tHDR_post_lib_loess_r1_e.sns/(X19_tHDR_post_lib_loess_e.sns_r1r2_median_syn-X19_tHDR_post_lib_loess_e.sns_r1r2_median_ns))*(Xr_all_tHDR_post_lib_loess_e.sns_r1r2_median_syn-Xr_all_tHDR_post_lib_loess_e.sns_r1r2_median_ns)
X19r_final_df$tHDR_post_lib_loess_e.sns_r2_sns_norm <- (X19r_final_df$r2_tHDR_post_lib_loess_r2_e.sns/(X19_tHDR_post_lib_loess_e.sns_r1r2_median_syn-X19_tHDR_post_lib_loess_e.sns_r1r2_median_ns))*(Xr_all_tHDR_post_lib_loess_e.sns_r1r2_median_syn-Xr_all_tHDR_post_lib_loess_e.sns_r1r2_median_ns)
X20r_final_df$tHDR_post_lib_loess_e.sns_r1_sns_norm <- (X20r_final_df$r1_tHDR_post_lib_loess_r1_e.sns/(X20_tHDR_post_lib_loess_e.sns_r1r2_median_syn-X20_tHDR_post_lib_loess_e.sns_r1r2_median_ns))*(Xr_all_tHDR_post_lib_loess_e.sns_r1r2_median_syn-Xr_all_tHDR_post_lib_loess_e.sns_r1r2_median_ns)
X20r_final_df$tHDR_post_lib_loess_e.sns_r2_sns_norm <- (X20r_final_df$r2_tHDR_post_lib_loess_r2_e.sns/(X20_tHDR_post_lib_loess_e.sns_r1r2_median_syn-X20_tHDR_post_lib_loess_e.sns_r1r2_median_ns))*(Xr_all_tHDR_post_lib_loess_e.sns_r1r2_median_syn-Xr_all_tHDR_post_lib_loess_e.sns_r1r2_median_ns)
X21r_final_df$tHDR_post_lib_loess_e.sns_r1_sns_norm <- (X21r_final_df$r1_tHDR_post_lib_loess_r1_e.sns/(X21_tHDR_post_lib_loess_e.sns_r1r2_median_syn-X21_tHDR_post_lib_loess_e.sns_r1r2_median_ns))*(Xr_all_tHDR_post_lib_loess_e.sns_r1r2_median_syn-Xr_all_tHDR_post_lib_loess_e.sns_r1r2_median_ns)
X21r_final_df$tHDR_post_lib_loess_e.sns_r2_sns_norm <- (X21r_final_df$r2_tHDR_post_lib_loess_r2_e.sns/(X21_tHDR_post_lib_loess_e.sns_r1r2_median_syn-X21_tHDR_post_lib_loess_e.sns_r1r2_median_ns))*(Xr_all_tHDR_post_lib_loess_e.sns_r1r2_median_syn-Xr_all_tHDR_post_lib_loess_e.sns_r1r2_median_ns)
X22r_final_df$tHDR_post_lib_loess_e.sns_r1_sns_norm <- (X22r_final_df$r1_tHDR_post_lib_loess_r1_e.sns/(X22_tHDR_post_lib_loess_e.sns_r1r2_median_syn-X22_tHDR_post_lib_loess_e.sns_r1r2_median_ns))*(Xr_all_tHDR_post_lib_loess_e.sns_r1r2_median_syn-Xr_all_tHDR_post_lib_loess_e.sns_r1r2_median_ns)
X22r_final_df$tHDR_post_lib_loess_e.sns_r2_sns_norm <- (X22r_final_df$r2_tHDR_post_lib_loess_r2_e.sns/(X22_tHDR_post_lib_loess_e.sns_r1r2_median_syn-X22_tHDR_post_lib_loess_e.sns_r1r2_median_ns))*(Xr_all_tHDR_post_lib_loess_e.sns_r1r2_median_syn-Xr_all_tHDR_post_lib_loess_e.sns_r1r2_median_ns)
X23r_final_df$tHDR_post_lib_loess_e.sns_r1_sns_norm <- (X23r_final_df$r1_tHDR_post_lib_loess_r1_e.sns/(X23_tHDR_post_lib_loess_e.sns_r1r2_median_syn-X23_tHDR_post_lib_loess_e.sns_r1r2_median_ns))*(Xr_all_tHDR_post_lib_loess_e.sns_r1r2_median_syn-Xr_all_tHDR_post_lib_loess_e.sns_r1r2_median_ns)
X23r_final_df$tHDR_post_lib_loess_e.sns_r2_sns_norm <- (X23r_final_df$r2_tHDR_post_lib_loess_r2_e.sns/(X23_tHDR_post_lib_loess_e.sns_r1r2_median_syn-X23_tHDR_post_lib_loess_e.sns_r1r2_median_ns))*(Xr_all_tHDR_post_lib_loess_e.sns_r1r2_median_syn-Xr_all_tHDR_post_lib_loess_e.sns_r1r2_median_ns)
#binding all of the sns-normalized df's together...
#this data frame has been variant filtered and then normalized!!!
Xr_all_final_sns_norm <- rbind(X2r_final_df,X3r_final_df,X4r_final_df,X5r_final_df,X15r_final_df,X16r_final_df,X17r_final_df,X18r_final_df,X19r_final_df,X20r_final_df,X21r_final_df,X22r_final_df,X23r_final_df)
### calculate replicate dependent post-pre + lo.e.sns pre-lib scores for all points
#calculate a post-pre + pre-lib metric per replicate and compare to replicate reproducibility with other functional scores
Xr_all_final_sns_norm$r1_tHDR_pre_lib_lo_plus_post_pre <- Xr_all_final_sns_norm$r1_tHDR_pre_lib_loess_r1+log2(Xr_all_final_sns_norm$tHDR_post_pre_ratio_synnorm)
Xr_all_final_sns_norm$r2_tHDR_pre_lib_lo_plus_post_pre <- Xr_all_final_sns_norm$r2_tHDR_pre_lib_loess_r1+log2(Xr_all_final_sns_norm$r2_tHDR_post_pre_ratio_synnorm)
Xr_all_final_sns_norm$tHDR_pre_lib_lo_plus_post_pre_r1r2_mean <- (Xr_all_final_sns_norm$r2_tHDR_pre_lib_lo_plus_post_pre+Xr_all_final_sns_norm$r1_tHDR_pre_lib_lo_plus_post_pre)/2
#weighted by pre reads...
Xr_all_final_sns_norm$tHDR_post_lib_loess_e.sns_r1r2w_sns_norm <- Xr_all_final_sns_norm$tHDR_post_lib_loess_e.sns_r1_sns_norm*Xr_all_final_sns_norm$tHDR_pre_weight + Xr_all_final_sns_norm$tHDR_post_lib_loess_e.sns_r2_sns_norm*Xr_all_final_sns_norm$r2_tHDR_pre_weight
#write this out:
write.table(Xr_all_final_sns_norm, "/mount/SGE/BRCA1/Xr_all_final_sns_norm_20171016.txt", sep="\t")
#####update line
####
###
##
#global analysis again with normalized scores:
#filters on new filtered data:
#three scoring metrics to compare: tHDR_post_lib_loess_r1r2_sns_norm , tHDR_post_lib_loess_e.sns_r1r2_sns_norm, tHDR_post_lib_loess_e.sns_r1r2w_sns_norm
#two replicate metrics to compare: r1_tHDR_post_lib_loess_r1_e.sns, r2_tHDR_post_lib_loess_r2_e.sns
Xr_all_final_sns_norm_missynstop <- Xr_all_final_sns_norm[which(Xr_all_final_sns_norm[,'conseq']=='NON_SYNONYMOUS' | Xr_all_final_sns_norm[,'conseq']=='SYNONYMOUS' | Xr_all_final_sns_norm[,'conseq']=='STOP_GAINED' ),]
Xr_all_final_sns_norm_missynstopcs <- Xr_all_final_sns_norm[which(Xr_all_final_sns_norm[,'conseq']=='NON_SYNONYMOUS' | Xr_all_final_sns_norm[,'conseq']=='SYNONYMOUS' | Xr_all_final_sns_norm[,'conseq']=='STOP_GAINED' | Xr_all_final_sns_norm[,'conseq']=='CANONICAL_SPLICE' ),]
conseq_ord_Xr_all_final_sns_norm_missynstop <- Xr_all_final_sns_norm_missynstop
conseq_ord_Xr_all_final_sns_norm_missynstop$conseq <- factor(conseq_ord_Xr_all_final_sns_norm_missynstop$conseq, levels = c('STOP_GAINED','SYNONYMOUS','NON_SYNONYMOUS'))
Xr_all_final_sns_norm_missynstopcs <- Xr_all_final_sns_norm[which(Xr_all_final_sns_norm[,'conseq']=='NON_SYNONYMOUS' | Xr_all_final_sns_norm[,'conseq']=='SYNONYMOUS' | Xr_all_final_sns_norm[,'conseq']=='STOP_GAINED' | Xr_all_final_sns_norm[,'conseq']=='CANONICAL_SPLICE' ),]
conseq_ord_Xr_all_final_sns_norm_missynstopcs <- Xr_all_final_sns_norm_missynstopcs
conseq_ord_Xr_all_final_sns_norm_missynstopcs$conseq <- factor(conseq_ord_Xr_all_final_sns_norm_missynstopcs$conseq, levels = c('STOP_GAINED','CANONICAL_SPLICE','SYNONYMOUS','NON_SYNONYMOUS'))
conseq_ord_Xr_all_final_sns_norm <- Xr_all_final_sns_norm
conseq_ord_Xr_all_final_sns_norm$conseq <- factor(conseq_ord_Xr_all_final_sns_norm$conseq, levels = c('STOP_GAINED','CANONICAL_SPLICE','SYNONYMOUS','INTRONIC','SPLICE_SITE','5PRIME_UTR','NON_SYNONYMOUS'))
#all scoring metrics compared...
Xr_all_final_sns_norm_mis_clinvar_p_b <- Xr_all_final_sns_norm[which((Xr_all_final_sns_norm$conseq == 'NON_SYNONYMOUS' & Xr_all_final_sns_norm$clinvar_simple == 'Pathogenic') | (Xr_all_final_sns_norm$conseq == 'NON_SYNONYMOUS' & Xr_all_final_sns_norm$clinvar_simple == 'Benign')),]
Xr_all_final_sns_norm_clinvar_p_b <- Xr_all_final_sns_norm[which( Xr_all_final_sns_norm$clinvar_simple == 'Pathogenic' | Xr_all_final_sns_norm$conseq == 'NON_SYNONYMOUS' & Xr_all_final_sns_norm$clinvar_simple == 'Benign'),]
Xr_all_final_sns_norm_clinvar_p_b_lp_lb <- Xr_all_final_sns_norm[which( Xr_all_final_sns_norm$clinvar_simple == 'Pathogenic' | Xr_all_final_sns_norm$conseq == 'NON_SYNONYMOUS' & Xr_all_final_sns_norm$clinvar_simple == 'Benign' | Xr_all_final_sns_norm$clinvar_simple == 'Likely pathogenic' | Xr_all_final_sns_norm$clinvar_simple == 'Likely benign'),]
clinvar_ord_Xr_all_final_sns_norm_clinvar_p_b_lp_lb <- Xr_all_final_sns_norm_clinvar_p_b_lp_lb
clinvar_ord_Xr_all_final_sns_norm_clinvar_p_b_lp_lb$clinvar_simple <- factor(clinvar_ord_Xr_all_final_sns_norm_clinvar_p_b_lp_lb$clinvar_simple, levels = c("Pathogenic","Likely pathogenic","Likely benign","Benign","Uncertain significance","Conflicting interpretations of pathogenicity","absent","REF"))
#with colored boundaries for conseq
#without colored boundaries for conseq
#all missense variants ordered by clinvar
Xr_all_final_sns_norm_mis <- Xr_all_final_sns_norm[which((Xr_all_final_sns_norm$conseq == 'NON_SYNONYMOUS')),]
clinvar_ord_Xr_all_final_sns_norm_mis <- Xr_all_final_sns_norm_mis
clinvar_ord_Xr_all_final_sns_norm_mis$clinvar_simple <- factor(clinvar_ord_Xr_all_final_sns_norm_mis$clinvar_simple, levels = c("Pathogenic","Likely pathogenic","Likely benign","Benign","Uncertain significance","Conflicting interpretations of pathogenicity","absent","REF"))
#clinvar_ord_Xr_all_final_sns_norm_mis filtered on p/lp b/lb
clinvar_ord_Xr_all_final_sns_norm_mis_p_b_lp_lb <- clinvar_ord_Xr_all_final_sns_norm_mis[which( clinvar_ord_Xr_all_final_sns_norm_mis$clinvar_simple == 'Pathogenic' | clinvar_ord_Xr_all_final_sns_norm_mis$clinvar_simple == 'Benign' | clinvar_ord_Xr_all_final_sns_norm_mis$clinvar_simple == 'Likely pathogenic' | clinvar_ord_Xr_all_final_sns_norm_mis$clinvar_simple == 'Likely benign'),]
#only missense
#all variants ordered by ClinVar annotation
clinvar_ord_Xr_all_final_sns_norm <- Xr_all_final_sns_norm
clinvar_ord_Xr_all_final_sns_norm$clinvar_simple <- factor(clinvar_ord_Xr_all_final_sns_norm$clinvar_simple, levels = c("Pathogenic","Likely pathogenic","Likely benign","Benign","Uncertain significance","Conflicting interpretations of pathogenicity","absent","REF"))
#isolate all synonymous and missense variants and test how rna_pre_ratio correlates with survival (c_hdr_snv only, so RNA levels can be detected.
#only syn
Xr_all_final_sns_norm_syn <- Xr_all_final_sns_norm[which((Xr_all_final_sns_norm$conseq == 'SYNONYMOUS' & Xr_all_final_sns_norm$c_hdr_snv == 'True' & Xr_all_final_sns_norm$exon != 'X18') | (Xr_all_final_sns_norm$conseq == 'SPLICE_SITE' & Xr_all_final_sns_norm$c_hdr_snv == 'True' & Xr_all_final_sns_norm$CDSpos != 'NA' & Xr_all_final_sns_norm$exon != 'X18')),]
Xr_all_final_sns_norm_ns <- Xr_all_final_sns_norm[which((Xr_all_final_sns_norm$conseq == 'STOP_GAINED' & Xr_all_final_sns_norm$c_hdr_snv == 'True')),]
Xr_all_final_sns_norm_ns_no18 <- Xr_all_final_sns_norm[which((Xr_all_final_sns_norm$conseq == 'STOP_GAINED' & Xr_all_final_sns_norm$c_hdr_snv == 'True' & Xr_all_final_sns_norm$exon != 'X18')),]
#log2 median and sd for rna ratios
Xr_all_final_sns_norm_syn_rna_median <- median(log2(Xr_all_final_sns_norm_syn$tHDR_rna_pre_ratio_r1r2_mean_synnorm))
Xr_all_final_sns_norm_syn_rna_sd <- sd(log2(Xr_all_final_sns_norm_syn$tHDR_rna_pre_ratio_r1r2_mean_synnorm))
#defined as being within 1 SD from median (log2 taken here to compare
Xr_all_final_sns_norm_syn_norm_exp <- Xr_all_final_sns_norm_syn[which(Xr_all_final_sns_norm_syn_rna_median + Xr_all_final_sns_norm_syn_rna_sd >= log2(Xr_all_final_sns_norm_syn$tHDR_rna_pre_ratio_r1r2_mean_synnorm) & log2(Xr_all_final_sns_norm_syn$tHDR_rna_pre_ratio_r1r2_mean_synnorm) >= Xr_all_final_sns_norm_syn_rna_median-Xr_all_final_sns_norm_syn_rna_sd),]
#with labels to understand outliers (post-lib discordancy label)... seems to be problem with one replicate's 'post' value?
### global correlations for different scores, and global comparisons of 'final' scores
### this is still a hanger on call to y=tHDR_post_lib_loess_e.sns_r1r2
cor(Xr_all_final_sns_norm$tHDR_pre_lib_lo_plus_post_pre_r1r2_mean,Xr_all_final_sns_norm$r_tHDR_post_lib_loess_e.sns_r1r2_mean,method='spearman')
cor(Xr_all_final_sns_norm$tHDR_pre_lib_lo_plus_post_pre_r1r2_mean,Xr_all_final_sns_norm$r1r2_tHDR_post_lib_loess_r1r2,method='spearman')
cor(Xr_all_final_sns_norm$r_tHDR_post_lib_loess_e.sns_r1r2_mean,Xr_all_final_sns_norm$r1r2_tHDR_post_lib_loess_r1r2,method='spearman')
#normalized scores (two different ways).
cor(Xr_all_final_sns_norm$tHDR_post_lib_loess_e.sns_r1r2_sns_norm,Xr_all_final_sns_norm$tHDR_post_lib_loess_r1r2_sns_norm,method='spearman')
### global correlations with CADD to determine optimal 'fitness score' from these candidates
#has annotation in CADD
Xr_variants_with_CADD <- Xr_all_tHDR_pos_merge_master_df[which(Xr_all_tHDR_pos_merge_master_df$CADD.phred != 'NA' & Xr_all_tHDR_pos_merge_master_df$CADD.phred != 'REF' ),c('pos_alt')]
#filter Xr_all_final_sns_norm on CADD variants:
Xr_all_final_sns_norm_CADD <- Xr_all_final_sns_norm[Xr_all_final_sns_norm$pos_alt %in% Xr_variants_with_CADD,]
#compare correlations of top three metrics...
cor(Xr_all_final_sns_norm_CADD$tHDR_post_lib_loess_r1r2_sns_norm,as.numeric(as.character(Xr_all_final_sns_norm_CADD$CADD.phred)),method='spearman')
cor(Xr_all_final_sns_norm_CADD$tHDR_post_lib_loess_e.sns_r1r2_sns_norm,as.numeric(as.character(Xr_all_final_sns_norm_CADD$CADD.phred)),method='spearman')
cor(Xr_all_final_sns_norm_CADD$r1r2_tHDR_post_lib_loess_r1r2,as.numeric(as.character(Xr_all_final_sns_norm_CADD$CADD.phred)),method='spearman')
cor(Xr_all_final_sns_norm_CADD$tHDR_post_lib_loess_e.sns_r1r2_sns_norm,as.numeric(as.character(Xr_all_final_sns_norm_CADD$CADD.phred)),method='spearman')
cor(Xr_all_final_sns_norm_CADD$tHDR_post_lib_loess_e.sns_r1r2w_sns_norm,as.numeric(as.character(Xr_all_final_sns_norm_CADD$CADD.phred)),method='spearman')
#individual scores vs. cadd scores
cor(Xr_all_final_sns_norm_CADD$r1_tHDR_post_lib_loess_r1_e.sns,as.numeric(as.character(Xr_all_final_sns_norm_CADD$CADD.phred)),method='spearman')
cor(Xr_all_final_sns_norm_CADD$r2_tHDR_post_lib_loess_r2_e.sns,as.numeric(as.character(Xr_all_final_sns_norm_CADD$CADD.phred)),method='spearman')
### WORKING IN THESE UPDATES!
### final filtering strategy to reduce discordant calls between replicates?
### with remaining points, stats to get P-values
### global QC correlations:
#with labels to understand outliers (post-lib discordancy label)... seems to be problem with one replicate's 'post' value?
#replicate discrepancy plot w/o labels: which scoring system is more reproducible? about same
#pre sns normalization across exons...
cor(Xr_all_final_sns_norm$r1_tHDR_post_lib_loess_r1_e.sns,Xr_all_final_sns_norm$r2_tHDR_post_lib_loess_r2_e.sns,method='spearman')
cor(Xr_all_final_sns_norm$r1_tHDR_pre_lib_lo_plus_post_pre,Xr_all_final_sns_norm$r2_tHDR_pre_lib_lo_plus_post_pre,method='spearman')
#post sns normalization across exons...
cor(Xr_all_final_sns_norm$tHDR_post_lib_loess_e.sns_r1_sns_norm,Xr_all_final_sns_norm$tHDR_post_lib_loess_e.sns_r2_sns_norm,method='spearman')
#replicate discrepancy plot with labels:
#fitness scores of SNVs with with normal expression
#histogram comparing snv's with normal expression values and those with all expression
mean(Xr_all_final_sns_norm_syn_norm_exp$tHDR_post_lib_loess_e.sns_r1r2_sns_norm)
sd(Xr_all_final_sns_norm_syn_norm_exp$tHDR_post_lib_loess_e.sns_r1r2_sns_norm)
mean(Xr_all_final_sns_norm_ns$tHDR_post_lib_loess_e.sns_r1r2_sns_norm)
sd(Xr_all_final_sns_norm_ns$tHDR_post_lib_loess_e.sns_r1r2_sns_norm)
mean(Xr_all_final_sns_norm_syn_norm_exp$tHDR_post_lib_loess_e.sns_r1r2_sns_norm)-2*sd(Xr_all_final_sns_norm_syn_norm_exp$tHDR_post_lib_loess_e.sns_r1r2_sns_norm)
mean(Xr_all_final_sns_norm_ns$tHDR_post_lib_loess_e.sns_r1r2_sns_norm)+2*sd(Xr_all_final_sns_norm_ns$tHDR_post_lib_loess_e.sns_r1r2_sns_norm)
mean(Xr_all_final_sns_norm_syn_norm_exp$tHDR_post_lib_loess_e.sns_r1r2_sns_norm)-3*sd(Xr_all_final_sns_norm_syn_norm_exp$tHDR_post_lib_loess_e.sns_r1r2_sns_norm)
mean(Xr_all_final_sns_norm_ns$tHDR_post_lib_loess_e.sns_r1r2_sns_norm)+3*sd(Xr_all_final_sns_norm_ns$tHDR_post_lib_loess_e.sns_r1r2_sns_norm)
#add nonsense variants:
Xr_all_final_sns_norm_ns_syn_normex <- rbind(Xr_all_final_sns_norm_ns,Xr_all_final_sns_norm_syn_norm_exp)
#three ways to compare functional / non-functional split, all similar:
#it makes virtually no difference if this is weighted by 'r1 or r2 pre frequency'
#missense and syn
Xr_all_final_sns_norm_syn_mis_spl_noX18 <- Xr_all_final_sns_norm[which((Xr_all_final_sns_norm$conseq == 'SYNONYMOUS' & Xr_all_final_sns_norm$c_hdr_snv == 'True' & Xr_all_final_sns_norm$exon != 'X18') | (Xr_all_final_sns_norm$conseq == 'NON_SYNONYMOUS' & Xr_all_final_sns_norm$c_hdr_snv == 'True' & Xr_all_final_sns_norm$exon != 'X18') | (Xr_all_final_sns_norm$conseq == 'SPLICE_SITE' & Xr_all_final_sns_norm$c_hdr_snv == 'True' & Xr_all_final_sns_norm$CDSpos != 'NA' & Xr_all_final_sns_norm$exon != 'X18')),]
#### modeling section
library(gam)
#define 'lof' as a 1 or 0 based on nonsense SNVs / normal expression SYN SNVs.
assign_lof <- function(conseq){
if (conseq == 'STOP_GAINED') return(1) else return(0)
}
Xr_all_final_sns_norm_ns_syn_normex_gam <- Xr_all_final_sns_norm_ns_syn_normex
Xr_all_final_sns_norm_ns_syn_normex_gam$lof <- sapply(Xr_all_final_sns_norm_ns_syn_normex_gam$conseq,assign_lof)
#modeling with GAM -- use interacting terms and make this better? risk of overfitting
Xr_all_gam_out <- gam(lof ~ tHDR_post_lib_loess_e.sns_r1_sns_norm+tHDR_post_lib_loess_e.sns_r2_sns_norm, data = Xr_all_final_sns_norm_ns_syn_normex_gam, family = "binomial")
Xr_all_gam_out$coefficients
Xr_all_gam_pred <- predict(Xr_all_gam_out, newdata = Xr_all_final_sns_norm, se=TRUE)
Xr_all_gam_pred$fit
Xr_all_gam_out <- gam(lof ~ tHDR_post_lib_loess_e.sns_r1_sns_norm+tHDR_post_lib_loess_e.sns_r2_sns_norm, data = Xr_all_final_sns_norm_ns_syn_normex_gam, family = "binomial")
Xr_all_gam_out$coefficients
Xr_all_gam_pred <- predict(Xr_all_gam_out, newdata = Xr_all_final_sns_norm, se=TRUE)
Xr_all_gam_pred$fit
#MclustDA approach for Gaussian Mixture Modelling...
#using class from above... LOF = 1, F = 0
require(mclust)
Xr_all_mclust.train <- MclustDA(data = Xr_all_final_sns_norm_ns_syn_normex_gam[,c('tHDR_post_lib_loess_e.sns_r1r2_sns_norm')], class = Xr_all_final_sns_norm_ns_syn_normex_gam$lof, G = 1, modelNames = c('V'))
summary(Xr_all_mclust.train, parameters = TRUE)
Xr_all_mclust_lof_out <- rep('all_snvs',dim(Xr_all_final_sns_norm)[1])
summary(Xr_all_mclust.train, newdata = Xr_all_final_sns_norm[, c('tHDR_post_lib_loess_e.sns_r1r2_sns_norm')], newclass = Xr_all_mclust_lof_out)
Xr_all_mclust.predict <- predict.MclustDA(Xr_all_mclust.train, newdata = Xr_all_final_sns_norm[, c('tHDR_post_lib_loess_e.sns_r1r2_sns_norm')], newclass = Xr_all_mclust_lof_out,prior = c(0.5,0.5))
Xr_all_final_sns_norm$mclust_z_lof <- Xr_all_mclust.predict$z[,2]
Xr_all_final_sns_norm$mclust_class_lof <- Xr_all_mclust.predict$classification
max(Xr_all_final_sns_norm[which(Xr_all_final_sns_norm$mclust_class_lof == 0),c('mclust_z_lof')])
min(Xr_all_final_sns_norm[which(Xr_all_final_sns_norm$mclust_class_lof == 0),c('tHDR_post_lib_loess_e.sns_r1r2_sns_norm')])
min(Xr_all_final_sns_norm[which(Xr_all_final_sns_norm$mclust_class_lof == 1),c('mclust_z_lof')])
max(Xr_all_final_sns_norm[which(Xr_all_final_sns_norm$mclust_class_lof == 1),c('tHDR_post_lib_loess_e.sns_r1r2_sns_norm')])
mclust_functional_thresh <- mean(c(min(Xr_all_final_sns_norm[which(Xr_all_final_sns_norm$mclust_class_lof == 0),c('tHDR_post_lib_loess_e.sns_r1r2_sns_norm')]),max(Xr_all_final_sns_norm[which(Xr_all_final_sns_norm$mclust_class_lof == 1),c('tHDR_post_lib_loess_e.sns_r1r2_sns_norm')])))
mclust_lof_95 <- max(Xr_all_final_sns_norm[which(Xr_all_final_sns_norm$mclust_z_lof > 0.95),c('tHDR_post_lib_loess_e.sns_r1r2_sns_norm')])
mclust_lof_99 <- max(Xr_all_final_sns_norm[which(Xr_all_final_sns_norm$mclust_z_lof > 0.99),c('tHDR_post_lib_loess_e.sns_r1r2_sns_norm')])
mclust_f_05 <- min(Xr_all_final_sns_norm[which(Xr_all_final_sns_norm$mclust_z_lof < 0.05),c('tHDR_post_lib_loess_e.sns_r1r2_sns_norm')])
mclust_f_01 <- min(Xr_all_final_sns_norm[which(Xr_all_final_sns_norm$mclust_z_lof < 0.01),c('tHDR_post_lib_loess_e.sns_r1r2_sns_norm')])
min(Xr_all_final_sns_norm[which(Xr_all_final_sns_norm$mclust_z_lof < 0.001),c('tHDR_post_lib_loess_e.sns_r1r2_sns_norm')])
#How do these compare to the threshold using normalmixEM?
#frequentist, two normal distributions:
#redo null distributions with this...
#get all the P-values using syn_norm_exp
Xr_test_p_syn <- pnorm(Xr_all_final_sns_norm$tHDR_post_lib_loess_e.sns_r1r2_sns_norm,mean = mean(Xr_all_final_sns_norm_syn_norm_exp$tHDR_post_lib_loess_e.sns_r1r2_sns_norm), sd = sd(Xr_all_final_sns_norm_syn_norm_exp$tHDR_post_lib_loess_e.sns_r1r2_sns_norm))
#get all the P-values using ns
Xr_test_p_ns <- pnorm(Xr_all_final_sns_norm$tHDR_post_lib_loess_e.sns_r1r2_sns_norm,mean = mean(Xr_all_final_sns_norm_ns$tHDR_post_lib_loess_e.sns_r1r2_sns_norm), sd = sd(Xr_all_final_sns_norm_ns$tHDR_post_lib_loess_e.sns_r1r2_sns_norm), lower.tail = FALSE)
Xr_ratio_ns_syn <- Xr_test_p_ns/Xr_test_p_syn
Xr_log_ratio_ns_syn <- log10(Xr_ratio_ns_syn)
Xr_all_final_sns_norm$Xr_test_p_syn <- Xr_test_p_syn
Xr_all_final_sns_norm$Xr_test_p_ns <- Xr_test_p_ns
Xr_all_final_sns_norm$Xr_ratio_ns_syn <- Xr_ratio_ns_syn
Xr_all_final_sns_norm$Xr_log_ratio_ns_syn <- Xr_log_ratio_ns_syn
Xr_all_final_sns_norm$Xr_bh_p_syn <- p.adjust(Xr_all_final_sns_norm$Xr_test_p_syn, method = 'BH')
Xr_all_final_sns_norm$Xr_bh_p_ns <- p.adjust(Xr_all_final_sns_norm$Xr_test_p_ns, method = 'BH')
#suggested thresholds...
#uncorrected threshold for less than functional...
max(Xr_all_final_sns_norm[which(Xr_all_final_sns_norm$Xr_test_p_syn < 0.05),c('tHDR_post_lib_loess_e.sns_r1r2_sns_norm')])
#corrected threshold for less than functional...
Xr_bh_p_syn_max05 <- max(Xr_all_final_sns_norm[which(Xr_all_final_sns_norm$Xr_bh_p_syn < 0.05),c('tHDR_post_lib_loess_e.sns_r1r2_sns_norm')])
max(Xr_all_final_sns_norm[which(Xr_all_final_sns_norm$Xr_bh_p_syn < 0.01),c('tHDR_post_lib_loess_e.sns_r1r2_sns_norm')])
#uncorrected threshold for greater than nonsense...
min(Xr_all_final_sns_norm[which(Xr_all_final_sns_norm$Xr_test_p_ns < 0.05),c('tHDR_post_lib_loess_e.sns_r1r2_sns_norm')])
#corrected threshold for greater than nonsense...
Xr_bh_p_ns_min05 <- min(Xr_all_final_sns_norm[which(Xr_all_final_sns_norm$Xr_bh_p_ns < 0.05),c('tHDR_post_lib_loess_e.sns_r1r2_sns_norm')])
min(Xr_all_final_sns_norm[which(Xr_all_final_sns_norm$Xr_bh_p_ns < 0.01),c('tHDR_post_lib_loess_e.sns_r1r2_sns_norm')])
#calculate the 'inflection point' threshold in the data... where P(ns) and P(syn) are equal...
#take the mean between the two points on either side of the threshold..
Xr_bh_p_binary_cutoff <- mean(c(max(Xr_all_final_sns_norm[which(Xr_all_final_sns_norm$Xr_bh_p_ns > Xr_all_final_sns_norm$Xr_bh_p_syn),c('tHDR_post_lib_loess_e.sns_r1r2_sns_norm')]),min(Xr_all_final_sns_norm[which(Xr_all_final_sns_norm$Xr_bh_p_ns < Xr_all_final_sns_norm$Xr_bh_p_syn),c('tHDR_post_lib_loess_e.sns_r1r2_sns_norm')])))
#order the dataframe in descending order by P(SYN)
#histograms of training data and threshold for p-value FDR approach:
#BAYSEIAN MODELING SECTION
library(mixtools)
##mixtools normalmixEM --> Basic fit on known distributions... re-try this using fixed
ns_syn_normex_mm.opt <- normalmixEM(x = Xr_all_final_sns_norm_ns_syn_normex$tHDR_post_lib_loess_e.sns_r1r2_sns_norm, lambda = c(dim(Xr_all_final_sns_norm_syn_norm_exp)[1]/dim(Xr_all_final_sns_norm_ns_syn_normex)[1],dim(Xr_all_final_sns_norm_ns)[1]/dim(Xr_all_final_sns_norm_ns_syn_normex)[1]),mean.constr = c(mean(Xr_all_final_sns_norm_syn_norm_exp$tHDR_post_lib_loess_e.sns_r1r2_sns_norm),mean(Xr_all_final_sns_norm_ns$tHDR_post_lib_loess_e.sns_r1r2_sns_norm)), sd.constr = c(sd(Xr_all_final_sns_norm_syn_norm_exp$tHDR_post_lib_loess_e.sns_r1r2_sns_norm),sd(Xr_all_final_sns_norm_ns$tHDR_post_lib_loess_e.sns_r1r2_sns_norm)))
ns_syn_normex_mm.opt$mu
ns_syn_normex_mm.opt$sigma
#try calling on the complete data set --> means and sds start at defined locations, then move.
normalmixEM(x = Xr_all_final_sns_norm$tHDR_post_lib_loess_e.sns_r1r2_sns_norm, mu = c(mean(Xr_all_final_sns_norm_syn_norm_exp$tHDR_post_lib_loess_e.sns_r1r2_sns_norm),mean(Xr_all_final_sns_norm_ns$tHDR_post_lib_loess_e.sns_r1r2_sns_norm)),sigma = c(sd(Xr_all_final_sns_norm_syn_norm_exp$tHDR_post_lib_loess_e.sns_r1r2_sns_norm),sd(Xr_all_final_sns_norm_ns$tHDR_post_lib_loess_e.sns_r1r2_sns_norm)),lambda = c(0.5,0.5))
#try calling on the complete data set, using fixed mu and sigma...with lambda = c(0.5,0.5) (arbitrary) --> starting from 0.5, 0.5.
Xr_all_mm.out <- normalmixEM(x = Xr_all_final_sns_norm$tHDR_post_lib_loess_e.sns_r1r2_sns_norm, mean.constr = ns_syn_normex_mm.opt$mu, sd.constr = ns_syn_normex_mm.opt$sigma, lambda = c(0.5,0.5))
#try calling on the complete data set, using fixed mu and sigma...with lambda from syn/(ns+syn) (arbitrary) --> usually converges on the exact same values as above for lambda...
#Xr_all_mm.out <- normalmixEM(x = Xr_all_final_sns_norm$tHDR_post_lib_loess_e.sns_r1r2_sns_norm, mean.constr = ns_syn_normex_mm.opt$mu, sd.constr = ns_syn_normex_mm.opt$sigma, lambda = c(dim(Xr_all_final_sns_norm_syn_norm_exp)[1]/dim(Xr_all_final_sns_norm_ns_syn_normex)[1],dim(Xr_all_final_sns_norm_ns)[1]/dim(Xr_all_final_sns_norm_ns_syn_normex)[1]))
#try calling on the complete data set, using starting mu and sigma...with lambda = c(0.5,0.5) --> still gives same output parameters...
#Xr_all_mm.out <- normalmixEM(x = Xr_all_final_sns_norm$tHDR_post_lib_loess_e.sns_r1r2_sns_norm, mean = ns_syn_normex_mm.opt$mu, sd = ns_syn_normex_mm.opt$sigma, lambda = c(0.5,0.5))
Xr_all_final_sns_norm$posterior_ns <- Xr_all_mm.out$posterior[,2]
Xr_all_final_sns_norm$posterior_syn <- Xr_all_mm.out$posterior[,1]
Xr_all_final_sns_norm$posterior_OR <- Xr_all_final_sns_norm$posterior_ns/Xr_all_final_sns_norm$posterior_syn
Xr_all_OR_cutoff <- mean(c(max(Xr_all_final_sns_norm[which(Xr_all_final_sns_norm$posterior_ns > .50),c('tHDR_post_lib_loess_e.sns_r1r2_sns_norm')]),min(Xr_all_final_sns_norm[which(Xr_all_final_sns_norm$posterior_ns < .50),c('tHDR_post_lib_loess_e.sns_r1r2_sns_norm')])))
#max value likely LOF
Xr_all_llof_thresh <- max(Xr_all_final_sns_norm[which(Xr_all_final_sns_norm$posterior_ns > .95),c('tHDR_post_lib_loess_e.sns_r1r2_sns_norm')])
#max value that has 99% chance to be LOF
Xr_all_lof_thresh <- max(Xr_all_final_sns_norm[which(Xr_all_final_sns_norm$posterior_ns > .99),c('tHDR_post_lib_loess_e.sns_r1r2_sns_norm')])
#max value that is 10,000x more likely to be LOF
max(Xr_all_final_sns_norm[which(Xr_all_final_sns_norm$posterior_ns > .999),c('tHDR_post_lib_loess_e.sns_r1r2_sns_norm')])
#min value that has <5% chance of being LOF
Xr_all_lf_thresh <- min(Xr_all_final_sns_norm[which(Xr_all_final_sns_norm$posterior_ns < .05),c('tHDR_post_lib_loess_e.sns_r1r2_sns_norm')])
#min value that has <1% chance of being LOF
Xr_all_f01_thresh <- min(Xr_all_final_sns_norm[which(Xr_all_final_sns_norm$posterior_ns < 0.01),c('tHDR_post_lib_loess_e.sns_r1r2_sns_norm')])
Xr_all_f_thresh <- min(Xr_all_final_sns_norm[which(Xr_all_final_sns_norm$posterior_ns < 0.001),c('tHDR_post_lib_loess_e.sns_r1r2_sns_norm')])
#!!!! fix this call to plot the posterior probability of lof as a function of assay score and run two scripts below
#zooming in on inflection in OR
#comparing all 3 boundaries at 99% and 1% (mixtools;black, Mclust;blue) / or .05 FDR (red)
#comparing thresholds to tHDR_post_pre ratios
#comparing thresholds to tHDR_post_pre ratios (only for training data)
#color by ClinVar
#bimodal_compare and conseq_all plots with normalmixEM posterior set.
##drawing lines on the ClinVar plots
#replicate 1 vs. 2 with lines showing replicate concordance (gray) and similarity boundaries
#replicate 1 vs. 2 with lines!
### ASSIGN CATEGORIES TO ALL VARIANTS BASED ON THE POSTERIOR OF NS FROM mixtools MM:
Xr_all_final_sns_norm$Xr_mmfunc_class <- 'NA'
assign_mmfunc <- function(posterior_ns){
if (posterior_ns > 0.99) return('LOF') else if (posterior_ns < 0.01) return('FUNC') else return('INT')
}
Xr_all_final_sns_norm$Xr_mmfunc_class <- sapply(Xr_all_final_sns_norm$posterior_ns, assign_mmfunc)
#assigned functional classes to all variants in database (unfiltered)
### add in the real transcript annotation and amino acid changes (subtract 63 nt from CADD, 21 AA if in exon 15-23...)
assign_clinvar_positions <- function(cDNApos,CDSpos,protPos,exon){
if (exon == 'X2' | exon == 'X3' | exon == 'X4' | exon == 'X5' | is.na(cDNApos)) return(c(as.numeric(as.character(cDNApos)),as.numeric(as.character(CDSpos)),as.numeric(as.character(protPos)))) else return(c(as.numeric(as.character(cDNApos))-63,as.numeric(as.character(CDSpos))-63,as.numeric(as.character(protPos))-21))
}
clinvar_pos_values = data.frame()
clinvar_pos_values <- mapply(assign_clinvar_positions,Xr_all_final_sns_norm$cDNApos,Xr_all_final_sns_norm$CDSpos,Xr_all_final_sns_norm$protPos,Xr_all_final_sns_norm$exon)
Xr_all_final_sns_norm$clinvar_cDNApos <- clinvar_pos_values[1,]
Xr_all_final_sns_norm$clinvar_CDSpos <- clinvar_pos_values[2,]
Xr_all_final_sns_norm$clinvar_protPos <- clinvar_pos_values[3,]
Xr_all_final_sns_norm$pHGVS <- paste(paste('p.',Xr_all_final_sns_norm$oAA,sep=''),paste(Xr_all_final_sns_norm$clinvar_protPos,Xr_all_final_sns_norm$nAA,sep=''),sep='')
# define this like above, but need the rev_comp and the alt Xr_all_final_sns_norm$cHGVS <-
#which points are in flossies?
flossies.df <- read.csv('/Users/Greg/Documents/flossies_download_20171009_w_pos_alt.csv',header = TRUE)
variants_in_flossies <- flossies.df$pos_alt
assign_flossie_score <- function(snv_pos_alt){
if (snv_pos_alt %in% variants_in_flossies) return(flossies.df[which(flossies.df$pos_alt == snv_pos_alt),c('Overall.Frequency')]) else return(0)
}
Xr_all_final_sns_norm$flossies_score <- sapply(Xr_all_final_sns_norm$pos_alt, assign_flossie_score)
#which points are in BRAVO?
#note -- used BRAVO Freeze 5, and converted to hg19 coordinates using https://genome.ucsc.edu/cgi-bin/hgLiftOver
bravo.df <- read.csv('/Users/Greg/Documents/BRAVO_BRCA1_ENSG00000012048_11-19-2017.csv',header = TRUE)
variants_in_bravo <- bravo.df$hg19_pos_alt
Xr_variants_in_exac <- Xr_all_final_sns_norm[which(Xr_all_final_sns_norm$ExAC.ObsAlleles != 'NA'),]$pos_alt
Xr_variants_in_clinvar <- Xr_all_final_sns_norm[which(Xr_all_final_sns_norm$clinvar_simple != 'absent'),]$pos_alt
assign_bravo_AF <- function(snv_pos_alt){
if (snv_pos_alt %in% variants_in_bravo) return(bravo.df[which(bravo.df$hg19_pos_alt == snv_pos_alt),c('allele_freq')]) else return('NA')
}
assign_bravo_count <- function(snv_pos_alt){
if (snv_pos_alt %in% variants_in_bravo) return(bravo.df[which(bravo.df$hg19_pos_alt == snv_pos_alt),c('allele_count')]) else return('NA')
}
Xr_all_final_sns_norm$bravo_AF <- sapply(Xr_all_final_sns_norm$pos_alt,assign_bravo_AF)
Xr_all_final_sns_norm$bravo_count <- sapply(Xr_all_final_sns_norm$pos_alt,assign_bravo_count)
## filter now, and re-run all scripts, then save db (might want to do python for pooling)
#3958 total
dim(Xr_all_final_sns_norm)[1]
#3923 with a difference in scores between replicates of less than 4-fold
dim(Xr_all_final_sns_norm[which(abs(Xr_all_final_sns_norm$tHDR_post_lib_loess_e.sns_r1_sns_norm-Xr_all_final_sns_norm$tHDR_post_lib_loess_e.sns_r2_sns_norm)<2),])
#define filters
#most inclusive --> just ensures variant is not classified oppositely across replicates -- 3798
Xr_not_opposite_filter <- which(Xr_all_final_sns_norm$tHDR_post_lib_loess_e.sns_r1_sns_norm >= Xr_all_f01_thresh & Xr_all_final_sns_norm$tHDR_post_lib_loess_e.sns_r2_sns_norm > Xr_all_lof_thresh | Xr_all_final_sns_norm$tHDR_post_lib_loess_e.sns_r1_sns_norm < Xr_all_f01_thresh & Xr_all_final_sns_norm$tHDR_post_lib_loess_e.sns_r2_sns_norm <= Xr_all_lof_thresh | Xr_all_final_sns_norm$tHDR_post_lib_loess_e.sns_r2_sns_norm >= Xr_all_f01_thresh & Xr_all_final_sns_norm$tHDR_post_lib_loess_e.sns_r1_sns_norm > Xr_all_lof_thresh | Xr_all_final_sns_norm$tHDR_post_lib_loess_e.sns_r2_sns_norm < Xr_all_f01_thresh & Xr_all_final_sns_norm$tHDR_post_lib_loess_e.sns_r1_sns_norm <= Xr_all_lof_thresh )
#requires both replicates to point to either functional / not -- 3659
Xr_concordance_filter <- which( Xr_all_final_sns_norm$tHDR_post_lib_loess_e.sns_r1_sns_norm> Xr_all_OR_cutoff & Xr_all_final_sns_norm$tHDR_post_lib_loess_e.sns_r2_sns_norm> Xr_all_OR_cutoff | Xr_all_final_sns_norm$tHDR_post_lib_loess_e.sns_r1_sns_norm< Xr_all_OR_cutoff & Xr_all_final_sns_norm$tHDR_post_lib_loess_e.sns_r2_sns_norm< Xr_all_OR_cutoff)
#requires both replicates to have same classification -- 3289
Xr_same_class_filter <- which(Xr_all_final_sns_norm$tHDR_post_lib_loess_e.sns_r1_sns_norm >= Xr_all_f01_thresh & Xr_all_final_sns_norm$tHDR_post_lib_loess_e.sns_r2_sns_norm >= Xr_all_f01_thresh | Xr_all_final_sns_norm$tHDR_post_lib_loess_e.sns_r1_sns_norm <= Xr_all_lof_thresh & Xr_all_final_sns_norm$tHDR_post_lib_loess_e.sns_r2_sns_norm <= Xr_all_lof_thresh )
Xr_similarity_filter_1 <- which(abs(Xr_all_final_sns_norm$tHDR_post_lib_loess_e.sns_r1_sns_norm - Xr_all_final_sns_norm$tHDR_post_lib_loess_e.sns_r2_sns_norm) < 1)
Xr_similarity_filter_2 <- which(abs(Xr_all_final_sns_norm$tHDR_post_lib_loess_e.sns_r1_sns_norm - Xr_all_final_sns_norm$tHDR_post_lib_loess_e.sns_r2_sns_norm) < 2)