-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathpartition.py
executable file
·338 lines (276 loc) · 12.2 KB
/
partition.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
"""
Copyright (C) 2018 Shane Steinert-Threlkeld
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>
"""
from __future__ import division
import itertools
import random
import scipy.spatial
import colour
from sklearn.utils.extmath import cartesian
import numpy as np
from matplotlib import pyplot as plt
from matplotlib import gridspec
from mpl_toolkits.mplot3d import Axes3D
# TODO: DOCUMENT!
aRGB = colour.models.ADOBE_WIDE_GAMUT_RGB_COLOURSPACE
D50 = colour.ILLUMINANTS['CIE 1931 2 Degree Standard Observer']['D50']
def RGB_to_Lab(space, pt):
XYZ = colour.RGB_to_XYZ(pt,
space.whitepoint,
D50,
space.RGB_to_XYZ_matrix)
return colour.XYZ_to_Lab(XYZ)
def generate_CIELab_space(rgb_space=aRGB, axis_stride=0.1):
# 3 axes, equal strides along each
axes = [np.arange(0, 1+axis_stride, axis_stride)]*3
rgb_points = cartesian(axes)
lab_points = []
for row in range(len(rgb_points)):
lab_points.append(RGB_to_Lab(rgb_space, rgb_points[row, :]))
# dist is squared euclidean, so JND threshold is 0.23^2
return np.array(lab_points)
class Partition(object):
def __init__(self, points, num_labels, zero,
temp=0.01, conv=1.0, init_n=100, generate=True):
self.labels = range(num_labels)
self.partition = {label: [] for label in self.labels}
self.centroids = {label: zero for label in self.labels}
self.labelled_pts = [None]*len(points)
self.points = points
self.zero = zero
# TODO: write to / read from file?
if generate:
self.temp = temp
self.conv = conv
self.init_n = init_n
self._generate(init_n)
def assign_point(self, pt, label):
# pt.label = label
self.labelled_pts[pt] = label
# update centroid before .append so that weights are correct
self.centroids[label] = np.average(
[self.centroids[label], self.points[pt]],
axis=0,
weights=[len(self.partition[label]), 1])
self.partition[label].append(pt)
def remove_point(self, pt, label):
# update centroid first
self.centroids[label] -= self.points[pt] / len(self.partition[label])
self.partition[label].remove(pt)
self.labelled_pts[pt] = None
# pt.label = None
def relabel_point(self, pt, label):
self.remove_point(pt, self.labelled_pts[pt])
self.assign_point(pt, label)
def convexify_region(self, label):
# TODO: bug fix this!
region = self.partition[label]
all_points = self.points
# NOTE: sometimes the iterative calls to this method result in a cell of
# the partition being empty. We need to pass over it in those cases. But
# maybe we also need better logic to prevent this from happening?
if len(region) < len(self.zero)+1:
return
# TODO: fix two errors in ConvexHull: (i) tuple index out of range; (ii)
# not enough points to construct initial simplex; input is less than
# two-dimensional since it has the same x coordinate.
# (i) occurs when the number of points passed to ConvexHull is 0; this only
# happens when an entire region has been "gobbled up" in the relabeling
# process of this method. Is there a way around this?!
# Note: (ii) happens
# just if a very small number of points is generated, so we could hard-wire
# a minimum size of each cell of the partition.
# (iii) has a similar origin:
# when there are few points, they are more likely to be on a line.
# 'Qs' option: search until non-coplanar input is found...
# 'QJ' option: QHull joggles input so that it will be full dimensional.
# If points happen to be co-planar, this will get around it.
# Problem with QJ: it excludes some points from being inside their own
# convex hull. This effects the degree calculations quite a bit...
# SOLUTION: add 'noise' to points in space, when making the space, so
# that it's very unlikely that any will actually be linear!
convex_hull = scipy.spatial.ConvexHull(
[all_points[point] for point in region])
misclassified = [point for point in range(len(all_points))
if point_in_hull(all_points[point], convex_hull)
and point not in region]
if len(misclassified) > 0:
num_to_move = int(self.conv*len(misclassified))
misclassified.sort(
key=lambda point: min_dist(all_points[point],
all_points[region]))
to_move = misclassified[:num_to_move]
for point in to_move:
self.relabel_point(point, label)
def degree_of_convexity_of_cell(self, label):
# empty regions have "degree" 1.0
region = self.partition[label]
if len(region) < len(self.zero)+1:
return 1.0
convex_hull = scipy.spatial.ConvexHull(
[self.points[point] for point in region])
num_inside_hull = sum(np.apply_along_axis(
lambda pt: int(point_in_hull(pt, convex_hull)),
axis=1,
arr=self.points))
return len(region) / num_inside_hull
def degree_of_convexity(self):
partition = self.partition
return np.average(
[self.degree_of_convexity_of_cell(label) for label in partition],
# should the weights be different -- uniform? -- for this mean?
weights=[len(partition[label]) for label in partition])
def _generate(self, init_n):
points = self.points
unlabeled = range(len(points))
labels = self.labels
# nearest neighbors tree
self.neighbors = scipy.spatial.cKDTree(self.points)
# initialize with one seed point for each label
seeds = random.sample(unlabeled, len(labels))
for label in labels:
unlabeled.remove(seeds[label])
self.assign_point(seeds[label], label)
if init_n:
_, new_pts = self.neighbors.query(points[seeds[label]],
init_n+1)
for pt in list(new_pts[1:]):
if pt in unlabeled and pt not in seeds:
unlabeled.remove(pt)
self.assign_point(pt, label)
while len(unlabeled) > 0:
# get random point
new_idx = np.random.choice(unlabeled)
to_add = points[new_idx]
# choose cell based on how close it is to the other cells
dists = [min_dist(to_add, points[self.partition[label]])
for label in labels]
# TODO: parameterize the f in f(min_dist(pt, label))?
norm_dists = dists / max(dists)
weights = -np.array(norm_dists)
probs = softmax(weights, self.temp)
cell = np.random.choice(labels, p=probs)
# add both to partition and labels array
#self.assign_point(to_add, cell)
self.assign_point(new_idx, cell)
# mark as labeled
unlabeled.remove(new_idx)
if self.conv:
print 'Convexifying...'
# iterate through labels, starting with smallest, so that they are less
# likely to get gobbled up in the convexify-ing process
"""
sorted_labels = sorted(labels,
key=lambda label:
self.degree_of_convexity_of_cell(label),
reverse=True)
sorted_labels = sorted(labels, key=lambda label:
width(points[self.partition[label]]))
"""
sorted_labels = sorted(labels, key=lambda label:
len(self.partition[label]))
for label in sorted_labels:
self.convexify_region(label)
# TODO: record stats about partition here
# degree of convexity, size of each label, ...
# sum of squares distance
def dist(p1, p2):
"""Distance of n-d coordinates. """
return np.sum((p1 - p2)**2)
def min_dist(pt, ls):
return np.min(scipy.spatial.distance.cdist([pt], ls))
def width(ls):
return np.max(scipy.spatial.distance.cdist(ls, ls))
def softmax(weights, temp=1.0):
exp = np.exp(np.array(weights) / temp)
return exp / np.sum(exp)
# see https://stackoverflow.com/a/42165596
def point_in_hull(pt, hull, eps=1e-12):
return all(
(np.dot(eq[:-1], pt) + eq[-1] <= eps)
for eq in hull.equations)
# see https://stackoverflow.com/a/42254318
def distance_to_convex_hull(point, hull):
distances = []
for eq in hull.equations:
t = -(eq[-1] + np.dot(eq[:-1], point))/(np.sum(eq[:-1]**2))
projection = point + eq[:-1]*t
distances.append(dist(point, projection))
return min(distances)
def partition_to_img(partition, axes):
img = np.zeros([axes[0][1], axes[1][1]])
part = partition.partition
points = partition.points
for label in part:
for point in part[label]:
# de-noise point value
pt = np.around(points[point]).astype(int)
img[pt[0], pt[1]] = label
return img
def plot_3D_partition(partition):
xs, ys, zs, color = [], [], [], []
part = partition.partition
points = partition.points
for label in part:
print len(part[label])
for pt in part[label]:
point = points[pt]
xs.append(point[0])
ys.append(point[1])
zs.append(point[2])
color.append(label)
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
ax.scatter(xs, ys, zs, c=color)
plt.show()
def generate_2D_grid(temps, convs, axis_length):
my_axes = [(0, axis_length, 1), (0, axis_length, 1)]
points = np.array([np.array(pt, dtype=np.float_)
for pt in itertools.product(
*[range(*axis) for axis in my_axes])])
# add noise so that co-linear points are very unlikely
noise = np.random.random(points.shape) * 1e-5
points += noise
# points = [Point(points[row, :]) for row in range(len(points))]
num_labels = 7
labels = range(num_labels)
fig, axes = plt.subplots(nrows=len(temps), ncols=len(convs))
for row in range(len(temps)):
for col in range(len(convs)):
temp = temps[row]
conv = convs[col]
print '{}, {}'.format(temp, conv)
partition = Partition(points, num_labels, np.zeros(2), temp, conv)
print partition.degree_of_convexity()
print [len(partition.partition[label]) for label in labels]
img = partition_to_img(partition, my_axes)
ax = axes[row, col]
ax.set_yticks([])
ax.set_xticks([])
ax.imshow(img, aspect='equal', cmap='Set2')
for ax, col in zip(axes[0], convs):
ax.set_title('s = {}'.format(col), fontsize=12)
for ax, row in zip(axes[:, 0], temps):
ax.set_ylabel('c = {}'.format(row), fontsize=12)
fig.tight_layout(h_pad=0.001, w_pad=0.001)
plt.show()
if __name__ == '__main__':
generate_2D_grid([1, 0.1, 0.01, 0.001, 0.0005], [0, 0.25, 0.5, 0.75, 1.0], 50)
# generate_2D_grid([0.001, 0.0005], [0.75, 1.0], 40)
points = generate_CIELab_space(axis_stride=0.075)
print len(points)
num_labels = 7
for idx in range(4):
partition = Partition(points, num_labels, np.zeros(3), temp=0.001, conv=1.0)
print partition.degree_of_convexity()
plot_3D_partition(partition)