-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathtrain_xtgn.py
181 lines (149 loc) · 7.65 KB
/
train_xtgn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
import os
import time
import pickle
import random
import torch
import numpy as np
import pandas as pd
from methods.xtgn.data_process.metrics import metric
from methods.xtgn.data_process.data_process import run_data_preprocess
from methods.xtgn.data_process.adj_calculation import compute_adj_matrix
from methods.xtgn.data_process.util import EarlyStopping, load_wp_dataset_mask
from methods.xtgn.model.engine import trainer
from methods.prepare import prep_env
def setup_seed(seed):
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
np.random.seed(seed)
random.seed(seed)
torch.backends.cudnn.deterministic = True
def main(args, model_dir):
model_path = os.path.join(model_dir, 'checkpoint.pth')
# Load scaler
ss_path = os.path.join(model_dir, 'scaler.pickle')
with open(ss_path, 'rb') as handle:
scaler = pickle.load(handle)
device = args['device']
data_loader, _ = load_wp_dataset_mask(model_dir, args['ratio'], args['batch_size'], args['batch_size'],
scaler=scaler)
print('The Total Parameter: \n', args)
adj_path = os.path.join(model_dir, 'adj_matrix.csv')
adj_matrix = pd.read_csv(adj_path, header=None).to_numpy()
adj_matrix = torch.Tensor(adj_matrix).to(device)
engine = trainer(device=args['device'], scaler=scaler, num_nodes=args['num_nodes'],
seq_length_x=args['seq_length_x'], in_dim=args['feature_dim'], out_dim=args['seq_length_y'],
seq_length_y=args['seq_length_y'], weight_decay=args['weight_decay'],
dropout_rate=args['dropout_rate'], milestones=args['milestone'], num_epochs=args['max_epoch'],
print_freq=args['print_freq'], batch_size=args['batch_size'], gamma=None, clip=None,
residual_channels=args['residual_channels'], dilation_channels=args['dilation_channels'],
skip_channels=args['skip_channels'], end_channels=args['end_channels'], blocks=args['blocks'],
layers=args['wavenet_layers'], kernel_size=args['kernel_size'],
learning_rate=args['learning_rate'], embed_dim=args['embed_dim'], adj_matrix=adj_matrix)
print('Start Training: ', flush=True)
his_loss = []
train_time, val_time = [], []
early_stopping = EarlyStopping(patience=1, verbose=True, model_save_path=model_path)
for i in range(1, args['max_epoch'] + 1):
train_loss = []
train_mape = []
train_rmse = []
t1 = time.time()
data_loader['train_loader'].shuffle()
# Train model
for iter, (x, y, m) in enumerate(data_loader['train_loader'].get_iterator()):
train_x = torch.Tensor(x).to(device).transpose(1, 3)
train_y = torch.Tensor(y).to(device).transpose(1, 3)[:, 0, :, :]
train_m = torch.Tensor(m).to(device).transpose(1, 3)[:, 0, :, :]
metrics = engine.train(train_x, train_y, train_m, ite=i)
train_loss.append(metrics[0])
train_mape.append(metrics[1])
train_rmse.append(metrics[2])
if iter % args['print_freq'] == 0:
log = 'Iter: {:03d}, Train Loss: {:.4f}, Train MAPE: {:.4f}, Train RMSE: {:.4f}'
print(log.format(iter, train_loss[-1], train_mape[-1], train_rmse[-1]), flush=True)
t2 = time.time()
train_time.append(t2 - t1)
# Validation
valid_loss, valid_mape, valid_rmse = [], [], []
s1 = time.time()
for iter, (x, y, m) in enumerate(data_loader['test_loader'].get_iterator()):
valid_x = torch.Tensor(x).to(device).transpose(1, 3)
valid_y = torch.Tensor(y).to(device).transpose(1, 3)[:, 0, :, :]
valid_m = torch.Tensor(m).to(device).transpose(1, 3)[:, 0, :, :]
metrics = engine.eval(valid_x, valid_y, valid_m, ite=i)
valid_loss.append(metrics[0])
valid_mape.append(metrics[1])
valid_rmse.append(metrics[2])
s2 = time.time()
log = 'Epoch: {:03d}, Inference Time: {:.4f} secs'
print(log.format(i, (s2 - s1)))
val_time.append(s2 - s1)
mean_train_loss = np.mean(train_loss)
mean_train_mape = np.mean(train_mape)
mean_train_rmse = np.mean(train_rmse)
mean_valid_loss = np.mean(valid_loss)
mean_valid_mape = np.mean(valid_mape)
mean_valid_rmse = np.mean(valid_rmse)
his_loss.append(mean_valid_loss)
log = 'Epoch: {:03d}, Train Loss: {:.4f}, Train MAPE: {:.4f}, Train RMSE: {:.4f}, ' \
'Valid Loss: {:.4f}, Valid MAPE: {:.4f}, Valid RMSE: {:.4f}, Training Time: {:.4f}/epoch'
print(log.format(i, mean_train_loss, mean_train_mape, mean_train_rmse, mean_valid_loss, mean_valid_mape,
mean_valid_rmse, (t2 - t1)), flush=True)
early_stopping(mean_valid_loss, engine.model)
if early_stopping.early_stop:
print('Early Stopping!')
break
print("Training finished")
print("The valid loss on best model is: ", early_stopping.val_loss_min)
# Testing
engine.model.load_state_dict(torch.load(model_path))
outputs = []
real_y = torch.Tensor(data_loader['y_test']).to(device)
real_y = real_y.transpose(1, 3)[:, 0, :, :]
real_m = torch.Tensor(data_loader['m_test']).to(device)
real_m = real_m.transpose(1, 3)[:, 0, :, :]
for iter, (x, y, m) in enumerate(data_loader['test_loader'].get_iterator()):
test_x = torch.Tensor(x).to(device)
test_x = test_x.transpose(1, 3)
test_m = torch.Tensor(m).to(device).transpose(1, 3)[:, 0, :, :]
with torch.no_grad():
preds = engine.test(test_x, test_m)
outputs.append(preds.squeeze())
y_hat = torch.cat(outputs, dim=0)
y_hat = y_hat[:real_y.size(0), ...]
amae, amape, armse = [], [], []
for i in range(args['seq_length_y']):
pred = y_hat[:, :, i]
real = real_y[:, :, i]
m = real_m[:, :, i]
metrics = metric(pred, real, m, 0.0)
log = 'Evaluate best model on test data for horizon {:d}, ' \
'Test MAE: {:.4f}, Test MAPE: {:.4f}, Test RMSE: {:.4f}'
print(log.format(i + 1, metrics[0], metrics[1], metrics[2]))
amae.append(metrics[0].item())
amape.append(metrics[1].item())
armse.append(metrics[2].item())
log = 'On average over 288 horizons, Test MAE: {:.4f}, Test MAPE: {:.4f}, Test RMSE: {:.4f}'
print(log.format(np.mean(amae), np.mean(amape), np.mean(armse)))
print('The best model had been saved! you can ues it to inference your data.')
metrics = metric(y_hat / 1000, real_y / 1000, real_m, 0.0)
mae = metrics[0].cpu().numpy()
rmse = metrics[2].cpu().numpy()
score = (mae + rmse) / 2
print('The model result of MAE:{} RMSE:{} Score:{}'.format(mae, rmse, score))
if __name__ == '__main__':
args = prep_env()
args = {**args['xtgn'], **args}
model_dir = os.path.join('methods', args['checkpoints'], args['model_name'])
if not os.path.exists(model_dir):
os.mkdir(model_dir)
# Check if the data has been preprocessed or not.
adj_matrix_path = os.path.join(model_dir, 'adj_matrix.csv')
data_file = os.path.join(model_dir, f"train_{args['ratio']}_new_mask.npz")
if not os.path.isfile(adj_matrix_path) or not os.path.isfile(data_file):
input_data = os.path.join(args['data_path'], args['filename'])
location_data = os.path.join(args['data_path'], args['location_file'])
run_data_preprocess(input_data, model_dir, lag=args['seq_length_x'], horizon=args['seq_length_y'],
ratio=args['ratio'])
compute_adj_matrix(location_data, adj_matrix_path)
main(args, model_dir)