-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhtm_class.py
180 lines (146 loc) · 6.46 KB
/
htm_class.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
from random import Random
minOverlap = 10
connectedPerm = .5
permanenceInc = .05
inhibitionRadius = 10
class CustomList(list):
def __init__(self, length=0):
self.l = [0]*length
def __call__(self):
return self.l
def __getitem__(self, c):
return self.l[c]
def __setitem__(self, c, v):
self.l[c] = v
class Synapse:
def __init__(self, sourceInput):
self.permanence = Random().random()/5. - .1 + connectedPerm
self.sourceInput = sourceInput
class HTM:
def __init__(self, inputVectors, length=20000, depth=1):
# Spatial Pooler Variables
global inhibitionRadius
self.overlap = CustomList(length)
self.boost = CustomList(length)
self.maxDutyCycle = CustomList()
self.minDutyCycle = CustomList()
self.activeDutyCycle = CustomList()
self.overlapDutyCycle = CustomList()
self.potentialSynapses = dict()
self.connectedSynapses = dict()
self.columns = range(length)
self.inputVectors = inputVectors
# Temporal Pooler Variables
def input(self, t, j):
return self.inputVectors[t][j] == True
def boostFunction(self,activeDutyCycle, minDutyCycle):
# Fill here
pass
def updateActiveDutyCycle(self, c):
# Fill here
pass
def updateOverlapDutyCycle(self, c):
# Fill here
pass
def increasePermanences(self, c, inc):
# Fill here
pass
def averageReceptiveFieldSize(self):
# Fill here
pass
# Phase 1 of spatial pooler function
def overlap(self, t):
for c in self.columns:
self.overlap[c] = 0
for s in self.connectedSynapses[c]:
self.overlap[c] = self.overlap[c] + self.input(t, s.sourceInput)
if self.overlap[c] < minOverlap :
self.overlap[c] = 0
else :
self.overlap[c] = self.overlap[c] * self.boost(c)
# Phase 2 of spatial pooler function
def inhibition(self, t):
for c in self.columns:
minLocalActivity = self.kthScore(self.neighbors(c), self.desiredLocalActivity)
if self.overlap[c] > 0 and self.overlap[c] >= minLocalActivity:
self.activeColumns[t].append(c)
# Phase 3 of spatial pooler function
def learning(self, t):
for c in self.activeColumns[t]:
for s in self.potentialSynapses[c]:
if self.active(s) :
s.permanence += permanenceInc
s.permanence = min(1.0, s.permanence)
else:
s.permanence -= permanenceInc
s.permanence = max(0.0, s.permanence)
for c in self.columns:
self.minDutyCycle[c] = 0.01 * self.maxDutyCycle( self.neighbors(c))
self.activeDutyCycle[c] = self.updateActiveDutyCycle(c)
self.boost[c] = self.boostFunction(self.activeDutyCycle[c], self.minDutyCycle[c])
self.overlapDutyCycle[c] = self.updateOverlapDutyCycle(c)
if self.overlapDutyCycle[c] < self.minDutyCycle[c]:
self.increasePermanences(c, 0.1*connectedPerm)
inhibitionRadius = self.averageReceptiveFieldSize()
# Phase 1 of temporal pooler function -- Inference alone
def compute_activeState_IA(self, t):
for c in self.activeColumns[t]:
buPredicted = False
for i in range(cellsPerColumn):
if predictiveState(c, i, t-1) == True:
s = getActiveSegment(c, i, t-1, activeState)
if s.sequenceSegment == True:
buPredicted = True
activeState[c, i, t] = 1
if buPredicted == False:
for i in range(cellsPerColumn):
activeState[c, i, t] = 1
# Phase 2 of temporal pooler function -- Inference alone
def compute_predictiveState_IA(self, t):
for c, i in cells:
for s in segments(c, i):
if segmentActive(c, i, s, t):
predictiveState[c, i, t] = 1
# Phase 1 of temporal pooler -- combined inference and learning
def compute_activeState(self, t):
for c in activeColumns[t]:
buPredicted = False
IcChosen = False
for i in range(cellsPerColumn):
if predictiveState[c, i, t-1] == True:
s = getActiveSegment(c, i, t-1, activeState)
if s.sequenceSegment == True:
buPredicted = True
activeState[c, i, t] = 1
if segmentActive[s, t-1, learnState]:
IcChosen = True
learnState[c, i, t] = 1
if buPredicted == False:
for i in range(cellsPerColumn):
activeState[c, i, t] = 1
if IcChosen == False:
l, s = getBestMatchingCell[c, t-1]
learnState[c, i, t] = 1
sUpdate = getSegmentActiveSynapses[c, i, s, t-1, True]
sUpdate.sequenceSegment = True
segmentUpdateList.add(sUpdate)
# Phase 2 of temporal pooler -- combined inference and learning
def compute_predictiveState(self, t):
for c, i in cells:
for s in segments[c, i]:
if segmentActive[s, t, activeState] :
predictiveState[c, i, t] = 1
activeUpdate = getSegmentActiveSynapses[c, i, s, t, False]
segmentUpdateList.add(activeUpdate)
predSegment = getBestMatchingSegment(c, i, t-1)
predUpdate = getSegmentActiveSynapses(c, i, predSegment, t-1, True)
segmentUpdateList.add(predUpdate)
# Phase 3 of temporal pooler function
def update_synapses():
for c, i in cells:
if learnState[s, i, t] == 1 :
adaptSegments (segmentUpdateList[c, i], True)
segmentUpdateList[c, i].delete()
elif predictiveState[c, i, t] == 0 and predictiveState[c, i, t-1] == 1:
adaptSegments ( segmentUpdateList[c,i], False)
segmentUpdateList[c, i].delete()