-
Notifications
You must be signed in to change notification settings - Fork 26
/
Copy pathexp_main.py
62 lines (49 loc) · 2.6 KB
/
exp_main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import argparse
import pickle
import pandas as pd
from cgp import *
from cgp_config import *
from cnn_train import CNN_train
if __name__ == '__main__':
func_set = {
'ConvSet': CgpInfoConvSet,
'ResSet': CgpInfoResSet,
}
parser = argparse.ArgumentParser(description='Evolving CNN structures of GECCO 2017 paper')
parser.add_argument('--func_set', '-f', choices=func_set.keys(), default='ConvSet', help='Function set of CGP (ConvSet or ResSet)')
parser.add_argument('--gpu_num', '-g', type=int, default=1, help='Num. of GPUs')
parser.add_argument('--lam', '-l', type=int, default=2, help='Num. of offsprings')
parser.add_argument('--net_info_file', default='network_info.pickle', help='Network information file name')
parser.add_argument('--log_file', default='./log_cgp.txt', help='Log file name')
parser.add_argument('--mode', '-m', default='evolution', help='Mode (evolution / retrain)')
args = parser.parse_args()
# --- Optimization of the CNN architecture ---
if args.mode == 'evolution':
# Create CGP configuration and save network information
network_info = func_set[args.func_set](rows=5, cols=30, level_back=10, min_active_num=10, max_active_num=50)
with open(args.net_info_file, mode='wb') as f:
pickle.dump(network_info, f)
# Evaluation function for CGP (training CNN and return validation accuracy)
eval_f = CNNEvaluation(gpu_num=args.gpu_num, dataset='cifar10', valid_data_ratio=0.1, verbose=True,
epoch_num=50, batchsize=128)
# Execute evolution
cgp = CGP(network_info, eval_f, lam=args.lam)
cgp.modified_evolution(max_eval=1000, mutation_rate=0.05, log_file=args.log_file)
# --- Retraining evolved architecture ---
elif args.mode == 'retrain':
# Load CGP configuration
with open(args.net_info_file, mode='rb') as f:
network_info = pickle.load(f)
# Load network architecture
cgp = CGP(network_info, None)
data = pd.read_csv(args.log_file, header=None) # Load log file
cgp.load_log(list(data.tail(1).values.flatten().astype(int))) # Read the log at final generation
# Retraining the network
temp = CNN_train('cifar10', validation=False, verbose=True)
acc = temp(cgp.pop[0].active_net_list(), 0, epoch_num=500, batchsize=128, weight_decay=5e-4, eval_epoch_num=450,
data_aug=True, comp_graph=None, out_model='retrained_net.model', init_model=None)
print(acc)
else:
print('Undefined mode.')