-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain_ocr.py
151 lines (132 loc) · 5.33 KB
/
train_ocr.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
import os
import json
import sys
import editdistance
import json
import torchvision.transforms as transforms
import torch
from torch.utils.data import DataLoader
from tqdm import tqdm
import tormentor
from tormentor.random import Uniform
from orfac_dataset import ORFACDataset
from orfac_dataset import orfac_collate_batch
from network import OCROnly
from converter import Converter
tormentor.Wrap.intensity = Uniform(value_range=(0., 1.5))
config = json.load(open(sys.argv[1], 'rt'))
for arg in sys.argv[2:]:
spl = arg.split('=')
config[spl[0]] = spl[1]
device = 'cuda:0'
batch = 32
patience = 20
cs = json.load(open('charmap.json', 'rt'))
cs['/PAD/'] = len(cs)+1
converter = Converter(cs)
augs =[transforms.Grayscale()]
for a in config['augmentations']:
if a[0]=='ColorJitter':
augs.append(transforms.ColorJitter(brightness=a[1], contrast=a[2]))
elif a[0]=='Affine':
augs.append(transforms.RandomAffine(degrees=a[1], shear=a[2]))
else: raise Exception('Unknown transform: %s' % a[0])
augs.append(transforms.ToTensor())
#augs.append(tormentor.Wrap())
trans = transforms.Compose(augs)
ds = ORFACDataset(folder=config['training'], charset=cs, transform=trans)
# ~ ds = OCRDataset(folder='/dev/shm/antiqua', charset=cs, transform=trans)
train_dataloader = DataLoader(ds, batch_size=batch, shuffle=True, collate_fn=orfac_collate_batch, num_workers=7)
trans = transforms.Compose([
transforms.Grayscale(),
transforms.ToTensor()
])
ds2 = ORFACDataset(folder=config['validation'], charset=None, transform=trans)
valid_dataloader = DataLoader(ds2, batch_size=1, shuffle=False, collate_fn=orfac_collate_batch, num_workers=7)
network = OCROnly(nb_classes=(len(cs)+1), feature_dim=128).to(device)
print(network)
if config['base'] is not None:
try:
network.load(config['base'])
print('Weights loaded from', config['base'])
except:
print('Could not load base:', config['base'])
quit(1)
else:
print('Training untrained network')
ctc_loss = torch.nn.CTCLoss(zero_infinity=True)
# ~ optimizer = torch.optim.SGD(network.parameters(), lr=0.0001, momentum=0.9)
optimizer = torch.optim.Adam(network.parameters(), lr=0.001)
# ~ optimizer = torch.optim.SGD(network.parameters(), lr=0.001)
try:
optimizer.load_state_dict(torch.load(os.path.join(config['base'], 'optimizer.pth')))
except:
print('No state dict for the optimizer')
scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, 'min', factor=0.5, patience=5)
os.makedirs(config['filename'], exist_ok=True)
network.save(config['filename'])
torch.save(optimizer.state_dict(), os.path.join(config['filename'], 'optimizer.pth'))
cer=100
with open(os.path.join(config['filename'], 'logs.txt'), 'wt') as lfile:
# ~ with torch.no_grad():
# ~ network.eval()
# ~ d_sum = 0
# ~ c_sum = 0
# ~ for tns, base_width, lbl, _ in tqdm(valid_dataloader, desc='Initial validation', leave=False):
# ~ out = network(tns.to(device)).transpose(0,1)
# ~ am = torch.argmax(out[:, :, :], 2)
# ~ res = converter.decode(am, base_width)
# ~ for i in range(len(lbl)):
# ~ d_sum += editdistance.eval(res[i], lbl[i])
# ~ c_sum += len(lbl[i])
# ~ best_cer = (100*d_sum/c_sum)
# ~ print('Initial CER: %.2f' % best_cer)
best_cer = 100
no_imp = 0
for epoch in range(1000):
# ~ if batch==32 and cer<50:
# ~ batch=320
# ~ train_dataloader = DataLoader(ds, batch_size=batch, shuffle=True, collate_fn=collate_batch, num_workers=7)
loss_sum = 0
network.train()
batches = 0
for tns, base_width, lbl, base_length, _, _ in tqdm(train_dataloader, desc='%s, %d' % (config['filename'], no_imp)):
tns = tns.to(device)
lbl = lbl.to(device)
out = network(tns)
il = network.convert_widths(base_width, out.shape[0])
ol = torch.Tensor([l for l in base_length]).long()
loss = ctc_loss(out.log_softmax(2), lbl, input_lengths=il, target_lengths=ol)
optimizer.zero_grad()
loss.backward()
optimizer.step()
loss_sum += loss.item()
batches += 1
with torch.no_grad():
network.eval()
d_sum = 0
c_sum = 0
for tns, base_width, lbl, _, _, _ in tqdm(valid_dataloader, leave=False, desc='Validation'):
out = network(tns.to(device)).transpose(0,1)
am = torch.argmax(out[:, :, :], 2)
res = converter.decode(am, base_width)
for i in range(len(lbl)):
d_sum += editdistance.eval(res[i], lbl[i])
c_sum += len(lbl[i])
cer = (100*d_sum/c_sum)
scheduler.step(cer)
tqdm.write('Loss sum: %.6f' % (loss_sum/batches))
tqdm.write(' CER: %.2f' % cer)
lfile.write('%d;%f;%f\n' % (epoch, loss_sum, cer))
lfile.flush()
if cer<best_cer:
no_imp = 0
network.save(config['filename'])
torch.save(optimizer.state_dict(), os.path.join(config['filename'], 'optimizer.pth'))
best_cer = cer
print('Saved')
else:
no_imp += 1
if no_imp>patience:
print('No improvement, lowest CER: %.2f' % best_cer)
break