forked from dfulu/UNIT
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathssim.py
64 lines (49 loc) · 2.32 KB
/
ssim.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
import torch
import torch.nn.functional as F
from torch.autograd import Variable
from math import exp
def gaussian(window_size, sigma):
gauss = torch.Tensor([exp(-(x - window_size//2)**2/float(2*sigma**2)) for x in range(window_size)])
return gauss/gauss.sum()
def create_window(window_size, channel):
_1D_window = gaussian(window_size, 1.5).unsqueeze(1)
_2D_window = _1D_window.mm(_1D_window.t()).float().unsqueeze(0).unsqueeze(0)
window = Variable(_2D_window.expand(channel, 1, window_size, window_size).contiguous())
return window
def _ssim(img1, img2, window, window_size, channel, size_average=True, filter_nan=False):
mu1 = F.conv2d(img1, window, padding = window_size//2, groups = channel)
mu2 = F.conv2d(img2, window, padding = window_size//2, groups = channel)
if filter_nan:
mask = torch.isnan(mu2)
img2 = torch.where(torch.isnan(img2), torch.zeros_like(img2), img2)
mu2 = torch.where(mask, torch.zeros_like(mu2), mu2)
mu1_sq = mu1.pow(2)
mu2_sq = mu2.pow(2)
mu1_mu2 = mu1*mu2
sigma1_sq = F.conv2d(img1*img1, window, padding = window_size//2, groups = channel) - mu1_sq
sigma2_sq = F.conv2d(img2*img2, window, padding = window_size//2, groups = channel) - mu2_sq
sigma12 = F.conv2d(img1*img2, window, padding = window_size//2, groups = channel) - mu1_mu2
C1 = 0.01**2
C2 = 0.03**2
ssim_map = ((2*mu1_mu2 + C1)*(2*sigma12 + C2))/((mu1_sq + mu2_sq + C1)*(sigma1_sq + sigma2_sq + C2))
# Filter out NaN values
if size_average:
if filter_nan:
return ssim_map[~mask].sum()/(~mask).sum()
else:
return ssim_map.mean()
else:
if filter_nan:
raise ValueError("not implemented")
return ssim_map.mean(1).mean(1).mean(1)
class SSIM(torch.nn.Module):
def __init__(self, window_size=11, channel=1, device='cuda', size_average=True, filter_nan=False):
super(SSIM, self).__init__()
self.window_size = window_size
self.size_average = size_average
self.channel = channel
self.filter_nan = filter_nan
self.window = create_window(window_size, self.channel).to(device)
def forward(self, img1, img2):
return _ssim(img1, img2, self.window, self.window_size, self.channel,
self.size_average, self.filter_nan)