forked from dfulu/UNIT
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata.py
531 lines (418 loc) · 18 KB
/
data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
"""
Licensed under the CC BY-NC-SA 4.0 license (https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode).
"""
from sklearn.model_selection import train_test_split as _array_train_test_split
import xarray as xr
import numpy as np
import xesmf as xe
from global_land_mask import globe
import torch
from functools import reduce
import cftime
import datetime
import warnings
from dask.array.core import PerformanceWarning
from abc import ABC, abstractmethod
def reduce_height(ds, level_vars):
ds_list = []
if 'height' in ds.dims:
for h, v in level_vars.items():
ds_list += [ds.sel(height=h)[[vi for vi in v]].drop('height')]
if len(ds_list)>1:
ds = reduce(lambda ds1, ds2: ds1.merge(ds2), ds_list)
else:
ds = ds_list[0]
else:
ds = ds[[vi for _, v in level_vars.items() for vi in v]]
return ds
def any_calendar_to_string(dt):
if isinstance(dt, np.datetime64):
return str(dt).split('.')[0]
elif isinstance(dt, datetime.datetime):
return dt.strftime("%Y-%m-%dT%H:%M:%S")
elif isinstance(dt, cftime.datetime):
return dt.strftime().replace(' ', 'T')
def any_calendar_to_datetime(dt):
if isinstance(dt, datetime.datetime):
return dt
elif isinstance(dt, np.datetime64):
return datetime.datetime.strptime(
str(dt).split('.')[0],
"%Y-%m-%dT%H:%M:%S"
)
elif isinstance(dt, cftime.datetime):
return datetime.datetime.strptime(
dt.strftime(),
"%Y-%m-%d %H:%M:%S"
)
def datemin_to_string(dts):
dts = [any_calendar_to_datetime(dt) for dt in dts]
return any_calendar_to_string(min(dts))
def datemax_to_string(dts):
dts = [any_calendar_to_datetime(dt) for dt in dts]
return any_calendar_to_string(max(dts))
def dataset_time_overlap(datasets_list):
start_time = datemax_to_string([ds.time.values.min() for ds in datasets_list])
end_time = datemin_to_string([ds.time.values.max() for ds in datasets_list])
if (
datetime.datetime.strptime(start_time, "%Y-%m-%dT%H:%M:%S") >=
datetime.datetime.strptime(end_time, "%Y-%m-%dT%H:%M:%S")
):
raise ValueError("start time ({}) and end time ({}) leave no overlap".format(start_time, end_time))
print("start time ({}) and end time ({})".format(start_time, end_time))
return [ds.sel(time=slice(start_time, end_time)) for ds in datasets_list]
def filter_bounds(ds):
return ds[[v for v in ds.data_vars if not 'bnds' in v]]
def split_lon_at(ds, degree):
with warnings.catch_warnings():
warnings.simplefilter("ignore", PerformanceWarning)
lons = ds.lon.values.copy()
too_big = lons>=degree
too_small = lons<degree-360
lons[too_big] = lons[too_big] - 360
lons[too_small] = lons[too_small] + 360
ds['lon'] = lons
ds = ds.sortby(ds.lon)
return ds
def _quick_add_bounds(ds):
assert len(np.unique(np.diff(ds.lon).round(3))) == 1
assert len(np.unique(np.diff(ds.lat).round(3))) == 1
dlat = np.diff(ds.lat).mean()
dlon = np.diff(ds.lon).mean()
lat_b = np.concatenate((ds.lat - dlat/2, [ds.lat[-1]+dlat/2])).clip(-90,90)
lon_b = np.concatenate((ds.lon - dlon/2, [ds.lon[-1]+dlon/2]))
ds['lat_b'] = lat_b
ds['lon_b'] = lon_b
def _quick_remove_bounds(ds):
del ds['lat_b']
del ds['lon_b']
def even_lat_lon(ds):
return ds.isel(
lat=slice(0, len(ds.lat)//2 * 2),
lon=slice(0, len(ds.lon)//2 * 2)
)
def construct_regridders(ds_a, ds_b, resolution_match='downscale', scale_method='bilinear', periodic=True):
if resolution_match=='downscale':
ds_out = xr.Dataset({'lat': min([ds_a.lat, ds_b.lat], key=lambda x: len(x)),
'lon': min([ds_a.lon, ds_b.lon], key=lambda x: len(x))})
elif resolution_match=='upscale':
ds_out = xr.Dataset({'lat': max([ds_a.lat, ds_b.lat], key=lambda x: len(x)),
'lon': max([ds_a.lon, ds_b.lon], key=lambda x: len(x))})
else:
raise ValueError("resolution_match must be one of ['upscale', 'downscale']")
_quick_add_bounds(ds_out)
_quick_add_bounds(ds_a)
_quick_add_bounds(ds_b)
if not ds_out[['lat', 'lon']].equals(ds_a[['lat', 'lon']]):
regridder_a = xe.Regridder(ds_a, ds_out, scale_method, periodic=periodic)
regridder_a.clean_weight_file()
else:
regridder_a = None
if not ds_out[['lat', 'lon']].equals(ds_b[['lat', 'lon']]):
regridder_b = xe.Regridder(ds_b, ds_out, scale_method, periodic=periodic)
regridder_b.clean_weight_file()
else:
regridder_b = None
_quick_remove_bounds(ds_a)
_quick_remove_bounds(ds_b)
return regridder_a, regridder_b
def kelvin_to_celcius(ds):
temp_vars = [v for v in ds.data_vars if 'tas' in v]
for v in temp_vars:
ds[v] = ds[v] - 273.15
return ds
def celcius_to_kelvin(ds):
temp_vars = [v for v in ds.data_vars if 'tas' in v]
for v in temp_vars:
ds[v] = ds[v] + 273.15
return ds
def precip_kilograms_to_mm(ds):
"""Convert from (kg m^-2 s^-1) to (mm day^-1)"""
precip_vars = [v for v in ds.data_vars if v=='pr']
for v in precip_vars:
ds[v] = ds[v] * 24*60**2
return ds
def precip_mm_to_kg(ds):
"""Convert from (mm day^-1) to (kg m^-2 s^-1) """
precip_vars = [v for v in ds.data_vars if v=='pr']
for v in precip_vars:
ds[v] = ds[v] / (24*60**2)
return ds
def z500_to_anomaly(ds):
"""Convert z500 to anomaly in 100m"""
ds['z500'] = (ds['z500'] - 5500) / 100
return ds
def z500_anomaly_to_z500(ds):
"""Convert z500 anomaly in 100m to z500 normal"""
ds['z500'] = (ds['z500'] * 100) + 5500
return ds
def temp_minmax_to_diff(ds):
if 'tas' in ds.keys():
for v in ['tasmin', 'tasmax']:
if v in ds.keys():
ds[v] = ds[v] - ds['tas']
return ds
def temp_diff_to_minmax(ds):
if 'tas' in ds.keys():
for v in ['tasmin', 'tasmax']:
if v in ds.keys():
ds[v] = ds[v] + ds['tas']
return ds
class Transformer(ABC):
def __init__(self, conf):
self.conf = conf
self._fit = False
self.ds_agg_a = None
self.ds_agg_b = None
self.rg_a = None
self.rg_b = None
def _check_fit(self):
if not self._fit:
raise ValueError("Need to call .fit() method first")
def fit(self, ds_a, ds_b):
periodic = self.conf['bbox'] is None
# match to the coarsest resolution of the pair
self.rg_a, self.rg_b = construct_regridders(ds_a, ds_b, self.conf['resolution_match'], self.conf['scale_method'], periodic)
# modify aggregates since regridding is done before preprocessing
# BEGIN DEPRECATED
# agg data is now calculated after transform
#if self.ds_agg_a is not None and self.rg_a is not None:
# self.ds_agg_a = self.rg_a(self.ds_agg_a).astype(np.float32)
#if self.ds_agg_b is not None and self.rg_b is not None:
# self.ds_agg_b = self.rg_b(self.ds_agg_b).astype(np.float32)
# END DEPRECATED
self._fit=True
@abstractmethod
def _transform(self, ds, rg, ds_agg):
pass
@abstractmethod
def _inverse(self, ds, ds_agg):
pass
def transform_a(self, ds):
self._check_fit()
return self._transform(ds, self.rg_a, self.ds_agg_a)
def transform_b(self, ds):
self._check_fit()
return self._transform(ds, self.rg_b, self.ds_agg_b)
def inverse_a(self, ds):
self._check_fit()
return self._inverse(ds, self.ds_agg_a)
def inverse_b(self, ds):
self._check_fit()
return self._inverse(ds, self.ds_agg_b)
class Normaliser(Transformer):
def __init__(self, conf):
super().__init__(conf)
self.ds_agg_a = xr.load_dataset(conf['agg_data_a'])
self.ds_agg_b = xr.load_dataset(conf['agg_data_b'])
def _transform(self, ds, rg, ds_agg):
ds = ds if rg is None else rg(ds).astype(np.float32)
ds = ds - ds_agg.sel(aggregate_statistic='mean').drop('aggregate_statistic')
ds = ds / ds_agg.sel(aggregate_statistic='std').drop('aggregate_statistic')
return ds
def _inverse(self, ds, ds_agg):
ds = ds * ds_agg.sel(aggregate_statistic='std').drop('aggregate_statistic')
ds = ds + ds_agg.sel(aggregate_statistic='mean').drop('aggregate_statistic')
return ds
class ZeroMeaniser(Normaliser):
def __init__(self, conf):
super().__init__(conf)
def _transform(self, ds, rg, ds_agg):
ds = ds if rg is None else rg(ds).astype(np.float32)
ds = ds - ds_agg.sel(aggregate_statistic='mean').drop('aggregate_statistic')
return ds
def _inverse(self, ds, ds_agg):
ds = ds + ds_agg.sel(aggregate_statistic='mean').drop('aggregate_statistic')
return ds
class UnitModifier(Transformer):
def __init__(self, conf):
super().__init__(conf)
def _transform(self, ds, rg, *args):
ds = ds if rg is None else rg(ds).astype(np.float32)
ds = kelvin_to_celcius(ds)
ds = precip_kilograms_to_mm(ds)
ds = z500_to_anomaly(ds)
if self.conf['tas_diff']:
ds = temp_minmax_to_diff(ds)
return ds
def _inverse(self, ds, *args):
if self.conf['tas_diff']:
ds = temp_diff_to_minmax(ds)
ds = z500_anomaly_to_z500(ds)
ds = precip_mm_to_kg(ds)
ds = celcius_to_kelvin(ds)
return ds
class CustomTransformer(Normaliser):
"""A non-standard set of transforms for (tas, tasmin, tasmax, pr).
To make the precip distribution less extreme:
pr -> pr^1/4
Shift temperatures to celcius so significance of zero C is easy.
Scale min/mean/max temperatures in same way so relation between them is obvious.
Scale all variables so precip and temps are given equivalent losses (ish).
"""
def __init__(self, conf, tas_field_norm=True, pr_field_norm=False):
super().__init__(conf)
self.tas_field_norm = tas_field_norm
self.pr_field_norm = pr_field_norm
def fit(self, ds_a, ds_b):
super().fit(ds_a, ds_b)
# same transforms to both datasets
self.ds_agg = 0.5 * (self.ds_agg_a + self.ds_agg_b)
if not self.tas_field_norm:
all_other_vars = [k for k in self.ds_agg.keys() if k in ['tas', 'tasmin', 'tasmax', 'z500']]
for k in all_other_vars:
self.ds_agg[k] = self.ds_agg[k].mean(dim=('lat', 'lon'))
if not self.pr_field_norm:
self.ds_agg['pr_4root'] = self.ds_agg['pr_4root'].mean(dim=('lat', 'lon'))
self.ds_agg_a = self.ds_agg_b = self.ds_agg
def _transform(self, ds, rg, ds_agg):
ds = ds if rg is None else rg(ds).astype(np.float32)
# precipitation
if 'pr' in ds.keys():
# In some of the data numerical error means 0 -> O(1e-22). Therefore need to clip.
ds['pr'] = ds['pr'].clip(0, None)**(1/4)
ds['pr'] /= ds_agg['pr_4root'].sel(aggregate_statistic='std').drop('aggregate_statistic')
# temperature
ds = kelvin_to_celcius(ds)
if self.conf['tas_diff']:
ds = temp_minmax_to_diff(ds)
temp_vars = [k for k in ds.keys() if k.startswith('tas')]
for k in temp_vars:
ds[k] /= ds_agg['tas'].sel(aggregate_statistic='std').drop('aggregate_statistic')
# other
other_vars = [k for k in ds.keys() if k in ['z500']]
for k in other_vars:
ds[k] -= ds_agg[k].sel(aggregate_statistic='mean').drop('aggregate_statistic')
ds[k] /= ds_agg[k].sel(aggregate_statistic='std').drop('aggregate_statistic')
return ds
def _inverse(self, ds, ds_agg):
# precipitation
if 'pr' in ds.keys():
ds['pr'] *= ds_agg['pr_4root'].sel(aggregate_statistic='std').drop('aggregate_statistic')
ds['pr'] = ds['pr']**4
# temperature
temp_vars = [k for k in ds.keys() if k.startswith('tas')]
for k in temp_vars:
ds[k] *= ds_agg['tas'].sel(aggregate_statistic='std').drop('aggregate_statistic')
if self.conf['tas_diff']:
ds = temp_diff_to_minmax(ds)
ds = celcius_to_kelvin(ds)
# other
other_vars = [k for k in ds.keys() if k in ['z500']]
for k in other_vars:
ds[k] *= ds_agg[k].sel(aggregate_statistic='std').drop('aggregate_statistic')
ds[k] += ds_agg[k].sel(aggregate_statistic='mean').drop('aggregate_statistic')
return ds
def get_land_mask(ds):
lat = ds.lat.values.copy()
lon = ds.lon.values.copy()
lon[lon>180] = lon[lon>180]-360
lon[lon<=-180] = lon[lon<=-180]+360
lon_grid, lat_grid = np.meshgrid(lon,lat)
land_mask = torch.from_numpy(
globe.is_land(lat_grid, lon_grid)
.astype(np.float32)).unsqueeze(0)
return land_mask
class ModelRunsDataset(torch.utils.data.Dataset):
def __init__(self, ds, use_land_mask=False):
# Ensure even valued image sides
self.ds = even_lat_lon(ds)
self.use_land_mask = use_land_mask
if use_land_mask:
self.land_mask = get_land_mask(ds)
else:
self.land_mask = None
def __len__(self):
return len(self.ds.time)*len(self.ds.run)
def __getitem__(self, index):
index_t = index%len(self.ds.time)
index_r = index//len(self.ds.time)
X = self.ds.isel(time=index_t, run=index_r).to_array().load()
return torch.from_numpy(X.values)
@property
def shape(self):
return (len(self),)+self.ds.isel(time=0, run=0).to_array().shape
@property
def dims(self):
return ('sample',)+self.ds.isel(time=0, run=0).to_array().dims
class SplitModelRunsDataset(ModelRunsDataset):
def __init__(self, ds, allowed_indices, use_land_mask=False):
super().__init__(ds, use_land_mask)
self.allowed_indices = allowed_indices
def __len__(self):
return len(self.allowed_indices)
def __getitem__(self, index):
index = self.allowed_indices[index]
return super().__getitem__(index)
def train_test_split(dataset: ModelRunsDataset, test_size: float,
random_state: int = None) -> ModelRunsDataset:
indices = np.arange(len(dataset))
train_indices, test_indices = _array_train_test_split(indices, test_size=test_size,
shuffle=True,
random_state=random_state)
train_dataset = SplitModelRunsDataset(dataset.ds, train_indices, dataset.use_land_mask)
test_dataset = SplitModelRunsDataset(dataset.ds, test_indices, dataset.use_land_mask)
return train_dataset, test_dataset
def get_dataset(zarr_path, level_vars=None, filter_bounds=True, split_at=360, bbox=None):
"""
zarr_path
reduce_height: {height: [variables],}
filter_bounds: bool, optional
split_at: int, [360, 180]
bbox: {}
"""
if split_at not in [360, 180]:
raise ValueError("image must be split at 360 or 180")
ds = xr.open_zarr(zarr_path, consolidated=True)
ds = split_lon_at(ds, split_at)
if bbox is not None:
print(bbox)
ds = ds.sel(lat=slice(bbox['S'], bbox['N']), lon=slice(bbox['W'], bbox['E']))
if filter_bounds:
ds = ds[[v for v in ds.data_vars if not 'bnds' in v]]
if level_vars is not None:
ds = reduce_height(ds, level_vars)
return ds
def get_all_data_loaders(conf):
# Parameters
params = {'batch_size': conf['batch_size'],
'num_workers': conf['num_workers']}
ds_a = get_dataset(conf['data_zarr_a'], conf['level_vars'], filter_bounds=False, split_at=conf['split_at'], bbox=conf['bbox'])
ds_b = get_dataset(conf['data_zarr_b'], conf['level_vars'], filter_bounds=False, split_at=conf['split_at'], bbox=conf['bbox'])
if conf['time_range'] is not None:
if conf['time_range'] == 'overlap':
ds_a, ds_b = dataset_time_overlap([ds_a, ds_b])
elif isinstance(conf['time_range'], dict):
time_slice = slice(conf['time_range']['start_date'], conf['time_range']['end_date'])
ds_a = ds_a.sel(time=time_slice)
ds_b = ds_b.sel(time=time_slice)
else:
raise ValueError("time_range not valid : {}".format(conf['time_range']))
if conf['preprocess_method']=='zeromean':
trans = ZeroMeaniser(conf)
elif conf['preprocess_method']=='normalise':
trans = Normaliser(conf)
elif conf['preprocess_method']=='units':
trans = UnitModifier(conf)
elif conf['preprocess_method']=='custom_allfield':
trans = CustomTransformer(conf, tas_field_norm=True, pr_field_norm=True)
elif conf['preprocess_method']=='custom_tasfield':
trans = CustomTransformer(conf, tas_field_norm=True, pr_field_norm=False)
elif conf['preprocess_method']=='custom_prfield':
trans = CustomTransformer(conf, tas_field_norm=False, pr_field_norm=True)
elif conf['preprocess_method']=='custom_nofield':
trans = CustomTransformer(conf, tas_field_norm=False, pr_field_norm=False)
else:
raise ValueError(f"Unrecognised preprocess_method : {conf['preprocess_method']}")
trans.fit(ds_a, ds_b)
ds_a = filter_bounds(ds_a)
ds_b = filter_bounds(ds_b)
ds_a = trans.transform_a(ds_a)
ds_b = trans.transform_b(ds_b)
dataset_a_train, dataset_a_test = train_test_split(ModelRunsDataset(ds_a, conf['use_land_mask']), conf['test_size'])
dataset_b_train, dataset_b_test = train_test_split(ModelRunsDataset(ds_b, conf['use_land_mask']), conf['test_size'])
loaders = [torch.utils.data.DataLoader(d, **params) for d in
[dataset_a_train, dataset_a_test,
dataset_b_train, dataset_b_test]
]
return loaders