-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathtest.py
54 lines (51 loc) · 1.78 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
import os
from src.utils.HED_data_parser import DataParser
from src.networks.hed import hed
from keras.utils import plot_model
from keras import backend as K
from keras import callbacks
import numpy as np
import glob
from PIL import Image
import cv2
test = glob.glob('images/*')
if __name__ == "__main__":
#environment
K.set_image_data_format('channels_last')
K.image_data_format()
os.environ["CUDA_VISIBLE_DEVICES"]= '0'
# if not os.path.isdir(model_dir): os.makedirs(model_dir)
# model
model = hed()
# plot_model(model, to_file=os.path.join(model_dir, 'model.pdf'), show_shapes=True)
# training
# call backs
model.load_weights('./checkpoints/HEDSeg/checkpoint.212-0.11.hdf5')
# train_history = model.predict()
for image in test:
name = image.split('/')[-1]
x_batch = []
im = Image.open(image)
(h,w) = im.size
print (h,w)
im = im.resize((480,480))
im = np.array(im, dtype=np.float32)
im = im[..., ::-1] # RGB 2 BGR
R = im[..., 0].mean()
G = im[..., 1].mean()
B = im[..., 2].mean()
im[..., 0] -= R
im[..., 1] -= G
im[..., 2] -= B
x_batch.append(im)
x_batch = np.array(x_batch, np.float32)
prediction = model.predict(x_batch)
mask = np.zeros_like(im[:,:,0])
for i in range(len(prediction)):
mask += np.reshape(prediction[i],(480,480))
ret,mask = cv2.threshold(mask,np.mean(mask)+1.2*np.std(mask),255,cv2.THRESH_BINARY)
out_mask = cv2.resize(mask, (h, w), interpolation=cv2.INTER_CUBIC)
# out_mask = mask.resize((h,w))
cv2.imwrite("output/%s" % name, out_mask)
# out_img = Image.fromarray(mask, astype='float32').resize((h,w))
# out_img.save('./b.jpg')