-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathunet_model.py
executable file
·127 lines (96 loc) · 4.2 KB
/
unet_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
import torch
import torch.nn as nn
from torchvision.models import vgg13_bn, vgg16_bn
import torch.optim as optim
test_model = True
__all__ = ['vgg13bn_unet', 'vgg16bn_unet']
def double_conv(in_channels, out_channels):
return nn.Sequential(
nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(out_channels),
nn.ReLU(inplace=True),
nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(out_channels),
nn.ReLU(inplace=True)
)
def up_conv(in_channels, out_channels, kernel_size, stride):
return nn.ConvTranspose2d(
in_channels, out_channels, kernel_size=kernel_size, stride=stride
)
class VGGNET(nn.Module):
"""Unet with VGG-13 (with BN), VGG-16 (with BN) encoder.
"""
def __init__(self, encoder, *, pretrained=False, nclasses): #out_channels=2):
super().__init__()
self.nclasses = nclasses
self.encoder = encoder(pretrained=pretrained).features
self.block1 = nn.Sequential(*self.encoder[:6])
self.block2 = nn.Sequential(*self.encoder[6:13])
self.block3 = nn.Sequential(*self.encoder[13:20])
self.block4 = nn.Sequential(*self.encoder[20:27])
self.block5 = nn.Sequential(*self.encoder[27:34])
self.bottleneck = nn.Sequential(*self.encoder[34:])
self.conv_bottleneck = double_conv(512, 1024)
self.up_conv6 = up_conv(1024, 512, kernel_size = 2, stride = 2)
self.conv6 = double_conv(512 + 512, 512)
self.up_conv7 = up_conv(512, 256, kernel_size = 2, stride = 2)
self.conv7 = double_conv(256 + 512, 256)
self.up_conv8 = up_conv(256, 128, kernel_size = 2, stride = 2)
self.conv8 = double_conv(128 + 256, 128)
self.up_conv9 = up_conv(128, 64, kernel_size = 2, stride = 2)
self.conv9 = double_conv(64 + 128, 64)
self.up_conv10 = up_conv(64, 32, kernel_size = 2, stride = 2)
self.conv10 = double_conv(32 + 64, 32)
self.conv11 = nn.Conv2d(32, nclasses, kernel_size=1) # out_channels, kernel
def forward(self, x):
block1 = self.block1(x)
block2 = self.block2(block1)
block3 = self.block3(block2)
block4 = self.block4(block3)
block5 = self.block5(block4)
bottleneck = self.bottleneck(block5)
x = self.conv_bottleneck(bottleneck)
x = self.up_conv6(x)
x = torch.cat([x, block5], dim=1)
x = self.conv6(x)
x = self.up_conv7(x)
x = torch.cat([x, block4], dim=1)
x = self.conv7(x)
x = self.up_conv8(x)
x = torch.cat([x, block3], dim=1)
x = self.conv8(x)
x = self.up_conv9(x)
x = torch.cat([x, block2], dim=1)
x = self.conv9(x)
x = self.up_conv10(x)
x = torch.cat([x, block1], dim=1)
x = self.conv10(x)
x = self.conv11(x)
return x
def vgg13bn_unet(nclasses , pretrained = False):
return VGGNET(vgg13_bn, pretrained=pretrained, nclasses=nclasses)
def vgg16bn_unet(nclasses, pretrained = False):
return VGGNET(vgg16_bn, pretrained=pretrained, nclasses=nclasses)
if __name__ == "__main__":
if test_model == True:
batch_size, nclasses, h, w = 10, 20, 160, 160
# test output size
unet_model = vgg16bn_unet(nclasses = nclasses, pretrained=True)
input = torch.autograd.Variable(torch.randn(batch_size, 3, h, w))
output = unet_model(input)
assert output.size() == torch.Size([batch_size, nclasses, h, w])
print("Passed size check")
criterion = nn.BCELoss()
optimizer = optim.SGD(unet_model.parameters(), lr=1e-3, momentum=0.9)
input = torch.autograd.Variable(torch.randn(batch_size, 3, h, w))
y = torch.autograd.Variable(torch.randn(batch_size, nclasses, h, w), requires_grad=False)
for iter in range(10):
optimizer.zero_grad()
out = unet_model(input)
# print(out)
out = torch.sigmoid(out)
loss = criterion(out, y)
loss.backward()
# print(loss)
print("iter{}, loss {}".format(iter, loss.item()))
optimizer.step()