-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathclient_demo_filetrans.py
376 lines (322 loc) · 14.3 KB
/
client_demo_filetrans.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
import torch.nn as nn
import torch.nn.functional as F
import importlib
import torch
import pickle #for pkl file reading
import os
import sys
import numpy as np
from torch.autograd import Variable
from torch.utils.data import DataLoader
from torch.utils.data import Dataset
from PIL import Image
import time
import scipy.io
import torchvision.transforms as transforms
from config import SERVER_ADDR, SERVER_PORT
from utils import recv_msg, send_msg, file_send
import socket
import struct
from torchvision import transforms
import math
#read data set from pkl files
class TwoConvOneFc(nn.Module):
def __init__(self, input_shape, out_dim):
super(TwoConvOneFc, self).__init__()
self.conv1 = nn.Conv2d(input_shape[0], 32, 5)
self.conv2 = nn.Conv2d(32, 64, 5)
self.fc1 = nn.Linear(1024, 512)
self.fc2 = nn.Linear(512, out_dim)
def forward(self, x):
out = F.relu(self.conv1(x))
out = F.max_pool2d(out, 2)
out = F.relu(self.conv2(out))
out = F.max_pool2d(out, 2)
out = out.view(out.size(0), -1)
out = F.relu(self.fc1(out))
out = self.fc2(out)
return out
class CifarCnn(nn.Module):
def __init__(self, input_shape, out_dim):
super(CifarCnn, self).__init__()
self.conv1 = nn.Conv2d(input_shape[0], 32, 5)
self.conv2 = nn.Conv2d(32, 64, 5)
self.fc1 = nn.Linear(64*5*5, 512)
self.fc2 = nn.Linear(512, 128)
self.fc3 = nn.Linear(128, out_dim)
for m in self.modules():
if isinstance(m, nn.Conv2d):
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
m.weight.data.normal_(0, math.sqrt(2. / n))
m.bias.data.zero_()
elif isinstance(m, nn.Linear):
stdv = 1. / math.sqrt(m.weight.size(1))
m.weight.data.uniform_(-stdv, stdv)
if m.bias is not None:
m.bias.data.uniform_(-stdv, stdv)
def forward(self, x):
out = F.relu(self.conv1(x))
out = F.max_pool2d(out, 2)
out = F.relu(self.conv2(out))
out = F.max_pool2d(out, 2)
out = out.view(out.size(0), -1)
out = F.relu(self.fc1(out))
out = F.relu(self.fc2(out))
out = self.fc3(out)
return out
def read_data(data_dir):
"""Parses data in given train and test data directories
Assumes:
1. the data in the input directories are .json files with keys 'users' and 'user_data'
2. the set of train set users is the same as the set of test set users
Return:
clients: list of client ids
groups: list of group ids; empty list if none found
train_data: dictionary of train data (ndarray)
test_data: dictionary of test data (ndarray)
"""
#clients = []
#groups = []
data = {}
print('>>> Read data from:',data_dir)
#open training dataset pkl files
with open(data_dir, 'rb') as inf:
cdata = pickle.load(inf)
data.update(cdata)
data= MiniDataset(data['x'], data['y'])
return data
class MiniDataset(Dataset):
def __init__(self, data, labels):
super(MiniDataset, self).__init__()
self.data = np.array(data)
self.labels = np.array(labels).astype("int64")
if self.data.ndim == 4 and self.data.shape[3] == 3:
self.data = self.data.reshape(-1,16,16,3).astype("uint8")
self.transform = transforms.Compose(
[transforms.RandomHorizontalFlip(),
transforms.RandomCrop(32, 4),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
]
)
elif self.data.ndim == 4 and self.data.shape[3] == 1:
self.transform = transforms.Compose(
[transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
]
)
elif self.data.ndim == 3:
self.data = self.data.reshape(-1, 28, 28, 1).astype("uint8")
self.transform = transforms.Compose(
[transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
]
)
else:
self.data = self.data.astype("float32")
self.transform = None
def __len__(self):
return len(self.labels)
def __getitem__(self, index):
data, target = self.data[index], self.labels[index]
if self.data.ndim == 4 and self.data.shape[3] == 3:
data = Image.fromarray(data)
if self.transform is not None:
data = self.transform(data)
return data, target
# Model for MQTT_IOT_IDS dataset
class Logistic(nn.Module):
def __init__(self):
super(Logistic, self).__init__()
self.relu = nn.ReLU()
self.hidden_layer1 = nn.Linear(784,200)
self.hidden_layer2 = nn.Linear(200,10)
self.softmax = nn.LogSoftmax(dim=1)
def forward(self, x):
x = self.hidden_layer1(x)
x =self.relu(x)
x = self.hidden_layer2(x)
return self.softmax(x)
class MNIST_CNN(nn.Module):
def __init__(self):
super(MNIST_CNN, self).__init__()
self.conv1 = nn.Conv2d(1, 32, 5)
self.conv2 = nn.Conv2d(32, 64, 5)
self.max_pool1 = nn.MaxPool2d(2)
self.max_pool2 = nn.MaxPool2d(2)
self.fc1 = nn.Linear(1024, 512)
self.fc2 = nn.Linear(512, 10)
self.relu = nn.ReLU()
def forward(self, x):
x = F.relu(self.conv1(x))
x = self.max_pool1(x)
x = F.relu(self.conv2(x))
x = self.max_pool2(x)
x = x.view(-1, 4*4*64)
x = F.relu(self.fc1(x))
x = self.fc2(x)
return F.log_softmax(x, dim=1)
def local_test(model,test_dataloader):
model.eval()
print("test")
test_loss = test_acc = test_total = 0.
with torch.no_grad():
for x,y in test_dataloader:
pred = model(x)
loss = criterion(pred, y)
_, predicted = torch.max(pred, 1)
correct = predicted.eq(y).sum()
test_acc += correct.item()
test_loss += loss.item() * y.size(0)
test_total += y.size(0)
return test_acc/test_total, test_loss/test_total
sock = socket.socket()
sock.connect((SERVER_ADDR, SERVER_PORT))
print('---------------------------------------------------------------------------')
try:
while True:
msg, temp = recv_msg(sock, 'MSG_INIT_SERVER_TO_CLIENT')
options = msg[1]
cid = msg[2]
print("cid:", cid)
# Training parameters
lr_rate = options['lr'] # Initial learning rate
weight_decay = 0.99 # Learning rate decay
num_epoch = options['num_epoch'] # Local epoches
batch_size = options['batch_size'] # Data sample for training per comm. round
model = options['model']
num_round = options['num_round']
#model = Logistic(784, 10)
if model == 'cnn':
model = MNIST_CNN()
else:
model = Logistic()
#model = Logistic(2500, 6)
# model = Logistic(1024, 10)
# model = TwoConvOneFc((3,16,16), 10)
optimizer = torch.optim.SGD(model.parameters(), lr=lr_rate,momentum=0.9)
scheduler = torch.optim.lr_scheduler.ExponentialLR(optimizer,weight_decay,last_epoch=-1)
criterion = torch.nn.CrossEntropyLoss()
# Import the data set
file_name = 'iid/MNIST_iid' + str(cid) + '.pkl'
train_data = read_data(file_name)
print('data read successfully')
# make the data loader
train_loader = torch.utils.data.DataLoader(dataset=train_data,
batch_size=batch_size,
shuffle=True)
print('Make dataloader successfully')
msg_recv_time = []
msg_recv_process_time = []
local_train_time = []
local_wait_time = []
msg_send_time = []
msg_send_process_time = []
msg_wait_send_time = []
init_point = []
start_point = []
while True:
print('---------------------------------------------------------------------------')
init = time.time()
process_recv = time.time()
msg, recv_time = recv_msg(sock, 'MSG_WEIGHT_TAU_SERVER_TO_CLIENT')
is_last_round = msg[1]
global_model_weights = msg[2]
round_i = msg[3]
model.load_state_dict(global_model_weights)
start = time.time()
print('last_round:', is_last_round)
# 文件传输部分
# if is_last_round:
# Titlelist = []
# addr = str(sock.getsockname())
# addr = addr.replace('.', '_')
# addr = addr.replace('(', '')
# addr = addr.replace(')', '')
# addr = addr.replace('\'', '')
# addr = addr.replace(',', '_')
# addr = addr.replace(' ', '')
# print('addr:', addr)
#
# saveTitle = 'local_train' + 'T' + str(options['num_round']) + 'E' + str(
# options['num_epoch']) + 'B' + str(options['batch_size']) + 'id' + str(addr)
# saveTitle1 = 'local_wait' + 'T' + str(options['num_round']) + 'E' + str(
# options['num_epoch']) + 'B' + str(options['batch_size']) + 'id' + str(addr)
# saveTitle2 = 'local_send' + 'T' + str(options['num_round']) + 'E' + str(
# options['num_epoch']) + 'B' + str(options['batch_size']) + 'id' + str(addr)
# saveTitle3 = 'local_recv' + 'T' + str(options['num_round']) + 'E' + str(
# options['num_epoch']) + 'B' + str(options['batch_size']) + 'id' + str(addr)
# saveTitle4 = 'local_recv_process' + 'T' + str(options['num_round']) + 'E' + str(
# options['num_epoch']) + 'B' + str(options['batch_size']) + 'id' + str(addr)
# saveTitle5 = 'local_send_process' + 'T' + str(options['num_round']) + 'E' + str(
# options['num_epoch']) + 'B' + str(options['batch_size']) + 'id' + str(addr)
# saveTitle6 = 'local_send_wait' + 'T' + str(options['num_round']) + 'E' + str(
# options['num_epoch']) + 'B' + str(options['batch_size']) + 'id' + str(addr)
# saveTitle7 = 'local_init_point' + 'T' + str(options['num_round']) + 'E' + str(
# options['num_epoch']) + 'B' + str(
# options['batch_size']) + 'id' + str(addr)
# saveTitle8 = 'local_start_point' + 'T' + str(options['num_round']) + 'E' + str(
# options['num_epoch']) + 'B' + str(
# options['batch_size']) + 'id' + str(addr)
#
# Titlelist.append(saveTitle + '_time' + '.mat')
# Titlelist.append(saveTitle1 + '_time' + '.mat')
# Titlelist.append(saveTitle2 + '_time' + '.mat')
# Titlelist.append(saveTitle3 + '_time' + '.mat')
# Titlelist.append(saveTitle4 + '_time' + '.mat')
# Titlelist.append(saveTitle5 + '_time' + '.mat')
# Titlelist.append(saveTitle6 + '_time' + '.mat')
# Titlelist.append(saveTitle7 + '_time' + '.mat')
# Titlelist.append(saveTitle8 + '_time' + '.mat')
#
# scipy.io.savemat(saveTitle + '_time' + '.mat', mdict={saveTitle + '_time': local_train_time})
# scipy.io.savemat(saveTitle2 + '_time' + '.mat', mdict={saveTitle2 + '_time': msg_send_time})
# scipy.io.savemat(saveTitle1 + '_time' + '.mat', mdict={saveTitle1 + '_time': local_wait_time})
# scipy.io.savemat(saveTitle3 + '_time' + '.mat', mdict={saveTitle3 + '_time': msg_recv_time})
# scipy.io.savemat(saveTitle4 + '_time' + '.mat', mdict={saveTitle4 + '_time': msg_recv_process_time})
# scipy.io.savemat(saveTitle5 + '_time' + '.mat', mdict={saveTitle5 + '_time': msg_send_process_time})
# scipy.io.savemat(saveTitle6 + '_time' + '.mat', mdict={saveTitle6 + '_time': msg_wait_send_time})
# scipy.io.savemat(saveTitle7 + '_time' + '.mat', mdict={saveTitle7 + '_time': init_point})
# scipy.io.savemat(saveTitle8 + '_time' + '.mat', mdict={saveTitle8 + '_time': start_point})
#
# # Titlelist[0] = Titlelist[0] + '_time.mat'
#
# for i in range(9):
# file_send(sock, Titlelist[i])
#
# for i in range(9):
# os.remove(os.path.join(Titlelist[i]))
#
# break
model.train()
for iteration in range(num_epoch):
#for batch_idx, (x,y) in enumerate(train_loader):
x, y = next(iter(train_loader))
if options['model'] == 'logistic':
x = torch.reshape(x, (x.shape[0], 784))
optimizer.zero_grad()
pred = model(x)
loss = criterion(pred,y)
loss.backward()
optimizer.step()
# print('Global Round:'+ round_i+'\t'+'Local Epoch:')
end = time.time()
# acc, loss = local_test(model=model, test_dataloader=test_loader)
msg = ['MSG_WEIGHT_TIME_SIZE_CLIENT_TO_SERVER', model.state_dict()]
send_pkl_time = send_msg(sock, msg)
initd = time.time()
msg_recv_time.append(recv_time)
msg_recv_process_time.append(start - process_recv)
local_train_time.append(end - start)
local_wait_time.append(start - init - recv_time)
msg_wait_send_time.append(initd - end - send_pkl_time)
msg_send_time.append(send_pkl_time)
finished = time.time()
msg_send_process_time.append(finished - initd)
start_point.append(
[time.localtime(process_recv).tm_min, time.localtime(process_recv).tm_sec, math.modf(process_recv)[0]])
init_point.append([time.localtime(init).tm_min, time.localtime(init).tm_sec, math.modf(init)[0]])
# if is_last_round:
except (struct.error, socket.error):
print('Server has stopped')
pass