-
Notifications
You must be signed in to change notification settings - Fork 57
/
Copy pathgloo.py
68 lines (56 loc) · 1.73 KB
/
gloo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
#!/usr/bin/env python
import os
import torch as th
import torch.distributed as dist
from torch.multiprocessing import Process
def allreduce(send, recv):
""" Implementation of a ring-reduce. """
rank = dist.get_rank()
size = dist.get_world_size()
send_buff = th.zeros(send.size())
recv_buff = th.zeros(send.size())
accum = th.zeros(send.size())
accum[:] = send[:]
# th.cuda.synchronize()
left = ((rank - 1) + size) % size
right = (rank + 1) % size
for i in range(size - 1):
if i % 2 == 0:
# Send send_buff
send_req = dist.isend(send_buff, right)
dist.recv(recv_buff, left)
accum[:] += recv[:]
else:
# Send recv_buff
send_req = dist.isend(recv_buff, right)
dist.recv(send_buff, left)
accum[:] += send[:]
send_req.wait()
# th.cuda.synchronize()
recv[:] = accum[:]
def run(rank, size):
""" Distributed function to be implemented later. """
# t = th.ones(2, 2)
t = th.rand(2, 2).cuda()
# for _ in range(10000000):
for _ in range(4):
c = t.clone()
dist.all_reduce(c, dist.reduce_op.SUM)
# allreduce(t, c)
t.set_(c)
print(t)
def init_processes(rank, size, fn, backend='gloo'):
""" Initialize the distributed environment. """
os.environ['MASTER_ADDR'] = '127.0.0.1'
os.environ['MASTER_PORT'] = '29500'
dist.init_process_group(backend, rank=rank, world_size=size)
fn(rank, size)
if __name__ == "__main__":
size = 7
processes = []
for rank in range(size):
p = Process(target=init_processes, args=(rank, size, run))
p.start()
processes.append(p)
for p in processes:
p.join()