-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathseparate.py
214 lines (175 loc) · 7.29 KB
/
separate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
import soundfile as sf
import torch
import os
import librosa
import numpy as np
import onnxruntime as ort
from pathlib import Path
from argparse import ArgumentParser
from tqdm import tqdm
class ConvTDFNet:
def __init__(self, target_name, L, dim_f, dim_t, n_fft, hop=1024):
super(ConvTDFNet, self).__init__()
self.dim_c = 4
self.dim_f = dim_f
self.dim_t = 2**dim_t
self.n_fft = n_fft
self.hop = hop
self.n_bins = self.n_fft // 2 + 1
self.chunk_size = hop * (self.dim_t - 1)
self.window = torch.hann_window(window_length=self.n_fft, periodic=True)
self.target_name = target_name
out_c = self.dim_c * 4 if target_name == "*" else self.dim_c
self.freq_pad = torch.zeros([1, out_c, self.n_bins - self.dim_f, self.dim_t])
self.n = L // 2
def stft(self, x):
x = x.reshape([-1, self.chunk_size])
x = torch.stft(
x,
n_fft=self.n_fft,
hop_length=self.hop,
window=self.window,
center=True,
return_complex=True,
)
x = torch.view_as_real(x)
x = x.permute([0, 3, 1, 2])
x = x.reshape([-1, 2, 2, self.n_bins, self.dim_t]).reshape(
[-1, self.dim_c, self.n_bins, self.dim_t]
)
return x[:, :, : self.dim_f]
# Inversed Short-time Fourier transform (STFT).
def istft(self, x, freq_pad=None):
freq_pad = (
self.freq_pad.repeat([x.shape[0], 1, 1, 1])
if freq_pad is None
else freq_pad
)
x = torch.cat([x, freq_pad], -2)
c = 4 * 2 if self.target_name == "*" else 2
x = x.reshape([-1, c, 2, self.n_bins, self.dim_t]).reshape(
[-1, 2, self.n_bins, self.dim_t]
)
x = x.permute([0, 2, 3, 1])
x = x.contiguous()
x = torch.view_as_complex(x)
x = torch.istft(
x, n_fft=self.n_fft, hop_length=self.hop, window=self.window, center=True
)
return x.reshape([-1, c, self.chunk_size])
class Predictor:
def __init__(self, args):
self.args = args
self.model_ = ConvTDFNet(
target_name="vocals",
L=11,
dim_f=args["dim_f"],
dim_t=args["dim_t"],
n_fft=args["n_fft"]
)
if torch.cuda.is_available():
self.model = ort.InferenceSession(args['model_path'], providers=['CUDAExecutionProvider'])
else:
self.model = ort.InferenceSession(args['model_path'], providers=['CPUExecutionProvider'])
def demix(self, mix):
samples = mix.shape[-1]
margin = self.args["margin"]
chunk_size = self.args["chunks"] * 44100
assert not margin == 0, "margin cannot be zero!"
if margin > chunk_size:
margin = chunk_size
segmented_mix = {}
if self.args["chunks"] == 0 or samples < chunk_size:
chunk_size = samples
counter = -1
for skip in range(0, samples, chunk_size):
counter += 1
s_margin = 0 if counter == 0 else margin
end = min(skip + chunk_size + margin, samples)
start = skip - s_margin
segmented_mix[skip] = mix[:, start:end].copy()
if end == samples:
break
sources = self.demix_base(segmented_mix, margin_size=margin)
return sources
def demix_base(self, mixes, margin_size):
chunked_sources = []
progress_bar = tqdm(total=len(mixes))
progress_bar.set_description("Processing")
for mix in mixes:
cmix = mixes[mix]
sources = []
n_sample = cmix.shape[1]
model = self.model_
trim = model.n_fft // 2
gen_size = model.chunk_size - 2 * trim
pad = gen_size - n_sample % gen_size
mix_p = np.concatenate(
(np.zeros((2, trim)), cmix, np.zeros((2, pad)), np.zeros((2, trim))), 1
)
mix_waves = []
i = 0
while i < n_sample + pad:
waves = np.array(mix_p[:, i : i + model.chunk_size])
mix_waves.append(waves)
i += gen_size
mix_waves = torch.tensor(np.array(mix_waves), dtype=torch.float32)
with torch.no_grad():
_ort = self.model
spek = model.stft(mix_waves)
if self.args["denoise"]:
spec_pred = (
-_ort.run(None, {"input": -spek.cpu().numpy()})[0] * 0.5
+ _ort.run(None, {"input": spek.cpu().numpy()})[0] * 0.5
)
tar_waves = model.istft(torch.tensor(spec_pred))
else:
tar_waves = model.istft(
torch.tensor(_ort.run(None, {"input": spek.cpu().numpy() })[0])
)
tar_signal = (
tar_waves[:, :, trim:-trim]
.transpose(0, 1)
.reshape(2, -1)
.numpy()[:, :-pad]
)
start = 0 if mix == 0 else margin_size
end = None if mix == list(mixes.keys())[::-1][0] else -margin_size
if margin_size == 0:
end = None
sources.append(tar_signal[:, start:end])
progress_bar.update(1)
chunked_sources.append(sources)
_sources = np.concatenate(chunked_sources, axis=-1)
progress_bar.close()
return _sources
def predict(self, file_path):
mix, rate = librosa.load(file_path, mono=False, sr=44100)
if mix.ndim == 1:
mix = np.asfortranarray([mix, mix])
mix = mix.T
sources = self.demix(mix.T)
opt = sources[0].T
return (mix - opt, opt, rate)
def main():
parser = ArgumentParser()
parser.add_argument("files", nargs="+", type=Path, default=[], help="Source audio path")
parser.add_argument("-o", "--output", type=Path, default=Path("separated"), help="Output folder")
parser.add_argument("-m", "--model_path", type=Path, help="MDX Net ONNX Model path")
parser.add_argument("-d", "--no-denoise", dest="denoise", action="store_false", default=True, help="Disable denoising")
parser.add_argument("-M", "--margin", type=int, default=44100, help="Margin")
parser.add_argument("-c", "--chunks", type=int, default=15, help="Chunk size")
parser.add_argument("-F", "--n_fft", type=int, default=6144)
parser.add_argument("-t", "--dim_t", type=int, default=8)
parser.add_argument("-f", "--dim_f", type=int, default=2048)
args = parser.parse_args()
dict_args = vars(args)
os.makedirs(args.output, exist_ok=True)
for file_path in args.files:
predictor = Predictor(args=dict_args)
vocals, no_vocals, sampling_rate = predictor.predict(file_path)
filename = os.path.splitext(os.path.split(file_path)[-1])[0]
sf.write(os.path.join(args.output, filename+"_no_vocals.wav"), no_vocals, sampling_rate)
sf.write(os.path.join(args.output, filename+"_vocals.wav"), vocals, sampling_rate)
if __name__ == "__main__":
main()