forked from daviddalpiaz/r4sl
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path31-rda.Rmd
160 lines (112 loc) · 4.15 KB
/
31-rda.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
# Regularized Discriminant Analysis
We now use the `Sonar` dataset from the `mlbench` package to explore a new regularization method, **regularized discriminant analysis** (RDA), which combines the LDA and QDA. This is similar to how elastic net combines the ridge and lasso.
## Sonar Data
```{r}
# this is a temporary workaround for an issue with glmnet, Matrix, and R version 3.3.3
# see here: http://stackoverflow.com/questions/43282720/r-error-in-validobject-object-when-running-as-script-but-not-in-console
library(methods)
```
```{r, message = FALSE, warning = FALSE}
library(mlbench)
library(caret)
library(glmnet)
library(klaR)
```
```{r}
data(Sonar)
```
```{r}
#View(Sonar)
```
```{r}
table(Sonar$Class) / nrow(Sonar)
```
```{r}
ncol(Sonar) - 1
```
## RDA
Regularized discriminant analysis uses the same general setup as LDA and QDA but estimates the covariance in a new way, which combines the covariance of QDA $(\hat{\Sigma}_k)$ with the covariance of LDA $(\hat{\Sigma})$ using a tuning parameter $\lambda$.
$$
\hat{\Sigma}_k(\lambda) = (1-\lambda)\hat{\Sigma}_k + \lambda \hat{\Sigma}
$$
Using the `rda()` function from the `klaR` package, which `caret` utilizes, makes an additional modification to the covariance matrix, which also has a tuning parameter $\gamma$.
$$
\hat{\Sigma}_k(\lambda,\gamma) = (1 -\gamma) \hat{\Sigma}_k(\lambda) + \gamma \frac{1}{p} \text{tr}(\hat{\Sigma}_k(\lambda)) I
$$
Both $\gamma$ and $\lambda$ can be thought of as mixing parameters, as they both take values between 0 and 1. For the four extremes of $\gamma$ and $\lambda$, the covariance structure reduces to special cases:
- $(\gamma=0, \lambda=0)$: QDA - individual covariance for each group.
- $(\gamma=0, \lambda=1)$: LDA - a common covariance matrix.
- $(\gamma=1, \lambda=0)$: Conditional independent variables - similar to Naive Bayes, but variable variances within group (main diagonal elements) are all equal.
- $(\gamma=1, \lambda=1)$: Classification using euclidean distance - as in previous case, but variances are the same for all groups. Objects are assigned to group with nearest mean.
## RDA with Grid Search
```{r}
set.seed(1337)
cv_5_grid = trainControl(method = "cv", number = 5)
```
```{r}
set.seed(1337)
fit_rda_grid = train(Class ~ ., data = Sonar, method = "rda", trControl = cv_5_grid)
fit_rda_grid
```
```{r}
plot(fit_rda_grid)
```
## RDA with Random Search Search
```{r}
set.seed(1337)
cv_5_rand = trainControl(method = "cv", number = 5, search = "random")
```
```{r}
fit_rda_rand = train(Class ~ ., data = Sonar, method = "rda",
trControl = cv_5_rand, tuneLength = 9)
fit_rda_rand
```
```{r}
ggplot(fit_rda_rand)
```
## Comparison to Elastic Net
```{r}
set.seed(1337)
fit_elnet_grid = train(Class ~ ., data = Sonar, method = "glmnet",
trControl = cv_5_grid, tuneLength = 10)
```
```{r}
set.seed(1337)
fit_elnet_int_grid = train(Class ~ . ^ 2, data = Sonar, method = "glmnet",
trControl = cv_5_grid, tuneLength = 10)
```
## Results
```{r}
get_best_result = function(caret_fit) {
best_result = caret_fit$results[as.numeric(rownames(caret_fit$bestTune)), ]
rownames(best_result) = NULL
best_result
}
```
```{r}
knitr::kable(rbind(
get_best_result(fit_rda_grid),
get_best_result(fit_rda_rand)))
```
```{r}
knitr::kable(rbind(
get_best_result(fit_elnet_grid),
get_best_result(fit_elnet_int_grid)))
```
## External Links
- [Random Search for Hyper-Parameter Optimization](http://www.jmlr.org/papers/volume13/bergstra12a/bergstra12a) - Paper justifying random tuning parameter search.
- [Random Hyperparameter Search](https://topepo.github.io/caret/random-hyperparameter-search.html) - Details on random tuning parameter search in `caret`.
## RMarkdown
The RMarkdown file for this chapter can be found [**here**](31-rda.Rmd). The file was created using `R` version `r paste0(version$major, "." ,version$minor)` and the following packages:
- Base Packages, Attached
```{r, echo = FALSE}
sessionInfo()$basePkgs
```
- Additional Packages, Attached
```{r, echo = FALSE}
names(sessionInfo()$otherPkgs)
```
- Additional Packages, Not Attached
```{r, echo = FALSE}
names(sessionInfo()$loadedOnly)
```