-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdraft.tex
3881 lines (3659 loc) · 182 KB
/
draft.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
% \documenclass: mandatorio, indica o tipo/formato de documento
% \documentclass[12pt,a4paper]{abntex2}
\documentclass[12pt,a4paper,ruledheader]{report}
\usepackage[inner=2.0cm,outer=2.0cm,top=3.0cm,bottom=2.0cm]{geometry}
\usepackage{enumerate}
%\usepackage{chngcntr}
\usepackage[toc]{appendix}
\usepackage{pdflscape}
%\usepackage{rotating}
\usepackage[portuguese,brazilian,english]{babel}
%\usepackage[portuguese,brazil,brazilian]{babel}
%\usepackage[utf8]{inputenc} %comentar para luatex
\usepackage[utf8]{luainputenc} %comentar para pdftex
\usepackage{lmodern}
\usepackage[T1]{fontenc}
% \usepackage{ae}
\usepackage{fontspec}
%\usepackage{lxfonts}
\usepackage{nomencl}
%\makenomenclature
%\renewcommand{\rmdefault}{lmss}
%\renewcommand{\rmdefault}{ptm}
\renewcommand{\sfdefault}{lmss}
%\renewcommand{\sfdefault}{ptm}
%\renewcommand{\ttdefault}{ptm}
\usepackage{amsmath}
\usepackage{amsfonts}
\usepackage{mathrsfs}
\usepackage{amssymb}
\usepackage{bm}
% melhoras na justificação
\usepackage{microtype}
\usepackage{setspace}
\usepackage{float}
\onehalfspacing
\usepackage{units}
\usepackage{parskip}
\usepackage{stmaryrd}
\usepackage{appendix}
\usepackage{epigraph}
%angulos em graus
%\usepackage{gensymb}
%símbolo de grau (não funciona com package gensymb
%um dos dois tem de ser comentado)
\newcommand{\degree}{\ensuremath{^\circ}}
\usepackage{indentfirst}
\usepackage{graphicx}
\usepackage{pdfpages}
\usepackage{color}
\setlength{\parindent}{1.25cm}
%\setlength{\parskip}{0.2cm}
%\setlength\parindent{0pt}
%\setmarks{chapter}
\usepackage{listofsymbols}
\usepackage{fancyhdr}
% \usepackage{titlesec}
% \usepackage{ifthen}
% \usepackage{calc}
% \usepackage{abntex2abrev}
% \usepackage{setspace}
\usepackage{url}
\usepackage{cite}
% \usepackage[english,hyperpageref]{backref}
% Paginas com as citações na bibl
% \usepackage[num]{abntex2cite}
%\setlength{\headheight}{15.2pt}
\usepackage[breaklinks=true]{hyperref}
% \makeatletter
\hypersetup{
colorlinks=true, % false: boxed links; true: colored links
linkcolor=blue, % color of internal links
citecolor=blue, % color of links to bibliography
filecolor=magenta, % color of file links
urlcolor=blue,
bookmarksdepth=4
pdftitle={Thesis},
pdfauthor={Sabrina Tigik Ferr\~ao},
pdfsubject={Thesis},
pdfkeywords={plasma}{plasma kinetic theory}{collisions}
{quasilinear theory}{weak turbulence theory}
}
% \makeatother
\usepackage{cleveref}
\def\calE{{\cal E}}
\def\calL{{\cal L}}
\def\bk{{\bf k}}
\def\bq{{\bf q}}
\def\bv{{\bf v}}
\def\bu{{\bf u}}
\usepackage{makeidx}
%\maketitle
\makeindex
\definecolor{teal}{rgb}{0.0, 0.5, 0.5}
\definecolor{darkcyan}{rgb}{0.0, 0.55, 0.55}
\definecolor{darkblue}{rgb}{0.34,0.49,0.6}
\definecolor{darkgrayishcyan}{rgb}{0.275,0.38,0.35}
\definecolor{aurometalsaurus}{rgb}{0.43, 0.5, 0.5}
\definecolor{arsenic}{rgb}{0.23, 0.27, 0.29}
\definecolor{skobeloff}{rgb}{0.0, 0.48, 0.45}
\definecolor{skyblue}{rgb}{0.53, 0.81, 0.92}
\definecolor{raspberry}{rgb}{0.89, 0.04, 0.36}
\definecolor{amaranth}{rgb}{0.9, 0.17, 0.31}
\definecolor{softred}{rgb}{0.92,0.345,0.46}
\definecolor{darkelectricblue}{rgb}{0.33, 0.41, 0.47}
\definecolor{slategray}{rgb}{0.44, 0.5, 0.56}
\definecolor{cadet}{rgb}{0.33, 0.41, 0.47}
\definecolor{lapislazuli}{rgb}{0.15, 0.38, 0.61}
\definecolor{airforceblue}{rgb}{0.36, 0.54, 0.66}
\definecolor{cerulean}{rgb}{0.0, 0.48, 0.65}
\definecolor{chromeyellow}{rgb}{1.0, 0.65, 0.0}
\definecolor{deepsaffron}{rgb}{1.0, 0.6, 0.2}
\definecolor{fulvous}{rgb}{0.86, 0.52, 0.0}
\definecolor{pumpkin}{rgb}{1.0, 0.46, 0.09}
\definecolor{lilac}{rgb}{0.78, 0.64, 0.78}
\begin{document}
\frenchspacing
\input{pagtit}
\pagenumbering{gobble}
%\input{folhadeaprovacao}
%\input{ty}
%\input{epi}
%\input{resumo}
%\input{param}{\pagestyle{empty}}
%\pagenumbering{none}
\begin{abstract}
The weak turbulence theory has been an important theoretical tool
for the study of nonlinear kinetic instabilities in plasmas. For
a long time, this theory treated exclusively of the study of
oscillatory processes and its influence in the plasma dynamics. The
long-lasting timescale of nonlinear processes, however, suggests
that collisional processes might have some effect in the late plasma
dynamics, acting alongside nonlinear collective effects. In a recent
work [P. H. Yoon et al., Phys. Rev. E 93:033203 (2016)], collisional
% LFZ180220: Coloquei espaço entre a vírgula e "Phys. Rev. E". E coloquei
% vírgula após "incorporated", na linha que segue.
effects and collective processes were systematically incorporated,
starting from first principles, in the weak turbulence theory equations,
considering electrostatic oscillations. The outcome of this innovative
% LFZ180220: Mudei "outcomes" para "outcome", uma vez que o verbo está como
% "was".
% Sabrina: não seria melhor manter o "outcomes" e trocar "was" por "were"?
% É que tem mais de um resultado... Ou será que dá pra considerar esses
% dois itens como um resultado global?
approach was a formal mathematical expression for the collisional
damping rate for Langmuir and ion-sound waves, and the discovery of a
new fundamental process of emission of electrostatic fluctuations, in
the ion-sound and Langmuir frequency range, caused by binary interactions
of particles,
% LFZ180220: Não fica melhor "caused by binary interactions of particles",
% em lugar de "caused by particle scattering"? Se não achares adequado tens
% que voltar à forma anterior.
% Sabrina: Acho que pode ser. Na verdade meio que copiei parte dessa frase
% do artigo. Acho que o Peter quis dar ênfase ao fato de a mudança na forma
% da função de distribuição ser causada por espalhamento. Mas concordo que
% aqui pode causar certa confusão por causa do efeito de espalhamento das
% ondas. Então concordo, já fiz a mudança.
named \emph{electrostatic bremsstrahlung}. In the present study we
introduce the first numerical analysis of these two new equations and
discuss the relevance of these numerical results in the solar physics scope.
%The first work concerns the collisional damping equation, where we compare
The first work to be discussed concerns the collisional damping equation,
and in it we compare
% LFZ180220: Fiz uma proposta de mmudança na frase. OK?
% Sabrina: OK
the results of numerical integration of the rigorous expression with the
damping rate calculated with the widely applied \emph{Spitzer formula}.
% Besides that, the insignificance of the collisional damping rate gets
% LFZ180220: Aqui também, proposta de mudança na frase. Entre outras coisas,
% estou propondo inversão das frases. OK?
% (verifiquei que essa nova ordem está de acordo com o que estava no resumo,
% abaixo)
% Sabrina: ah sim, a ideia de inserir essa frase veio quando eu estava
% escrevendo o resumo já, aí só acrescentei aqui, mas no lugar errado,
% pelo visto
We show that the Spitzer approximation highly over-estimates the intensity
of collisional attenuation of plasma waves.
The lack of relevance of the collisional damping rate gets further
% proven
demonstrated when we compare it with the collisionless (Landau) damping rate.
In the second work to be discussed, we analyze
the so-far ignored electrostatic bremsstrahlung effect. We show that the
presence of electrostatic bremsstrahlung emission modifies the Langmuir
%spectrum, which in turn alters the shape of the initial Maxwellian electron
%velocity distribution.
% LFZ180220: Proposta de mudança aqui. OK?
% Sabrina: OK
spectrum, which in turn alters the shape of the initial electron
velocity distribution, assumed to be Maxwellian.
After a long time-evolution period (numerical
integration), the system seems to arrive to a new quasi-steady state, in
which the shape of the electron velocity distribution resembles the shape
of a core-halo distribution function, i.e., composed by a Maxwellian core
and a suprathermal tail. The outcomes of both analyses are unprecedented;
the prospects and possibilities for further studies on this subject are
promising.
% Sabrina: não sei se preciso mencionar este trabalho aqui, mas coloquei
% mesmo assim. Se achares denecessário, é só comentar o trecho a seguir:
% LFZ180220: Acho que cabe sim mencionar esse trabalho. Mas proponho uma
% mudança na frase. Acho exagerado dizer que "não tem nenhuma relação",
% uma vez que o bremsstrahlung é um efeito colisional.
% Sabrina: é, eu sei que alguma relação tem, só não sabia muito como
% expressar isso sem me enrolar. Enfim, ficou muito boa a tua sugestão.
In the end, we also present an extra result, indirectly related to the
main subject of this doctoral project, regarding the analysis of the
complete set of electromagnetic weak turbulence equations, in the presence
of a core-halo velocity distribution function.
%This work, however, was a
%parallel research and does not have any relation with the main subject of
%this doctoral working proposal.
% Sabrina: o trecho abaixo foi removido do abstract para dar uma
% "enxugada" no texto. Se achares necessário, recoloco.
% To do so, we assume Maxwellian
% velocity distribution for ions and electrons, and consider static ions
% while the electrons evolve in time under the quasilinear velocity diffusion
% process, which also includes spontaneous emission, collisional damping
% and, of course, electrostatic bremsstrahlung in the wave kinetic equation.
% For the particles we consider the quasilinear particle kinetic equation
% added by the linearized Landau collision operator.
\end{abstract}
\newpage
\begin{otherlanguage}{brazilian}
% \selectlanguage{portuguese}
\begin{abstract}
A teoria de turbulência fraca tem sido uma importante ferramenta
teórica para o estudo de instabilidades cinéticas não lineares
em plasmas. Por um longo tempo, esta teoria tratou exclusivamente
do estudo de processos oscilatórios e de sua influência na dinâmica
do plasma. Entretanto, a escala de tempo de longa duração dos
processos não lineares, sugere que processos colisionais podem ter
algum efeito na dinâmica do plasma, atuando em conjunto com os
efeitos dos processos coletivos não-lineares. Em um trabalho recente
[P. H. Yoon et al., Phys. Rev. E 93:033203 (2016)], efeitos colisionais
% LFZ180220: Coloquei espaço entre a vírgula e "Phys. Rev. E"
% Sabrina: OK
e processos coletivos foram sistematicamente incorporados, partindo
de primeiros princípios, nas equações da teoria de turbulência fraca,
considerando oscilações eletrostáticas. O resultado dessa abordagem
% LFZ180220: Mudei para "O resultado", para combinar com "foi"
% Sabrina: Nossa, sério que eu errei isso aqui também? Geeente...
% Traduzi sem nem pensar a respeito, que vergonha.
inovadora foi uma expressão matemática formal para a taxa de amortecimento
colisional para ondas de Langmuir e íon-acústicas, e a descoberta de um
novo processo fundamental de emissão de flutuações eletrostáticas, na
faixa de frequência das ondas de Langmuir e das ondas íon-acústicas,
%causado pelo espalhamento das partículas do plasma, nomeado como
% LFZ180220: Proponho mudança, compatível com a proposta no "abstract"
% Sabrina: OK
causado por interações binárias entre partículas do plasma, nomeado como
\emph{bremsstrahlung eletrostático}. Neste estudo, introduzimos as
primeiras análises numéricas relativas a essas duas novas equações e
discutimos a relevância desses resultados numéricos no contexto da física
%solar. O primeiro trabalho se refere à nova equação para o amortecimento
%colisional, no qual comparamos o resultado da integração numérica dessa
% LFZ180220: Proponho mudança similar àquela proposta no "abstract".
% Sabrina: OK
solar. O primeiro trabalho a ser discutido se refere à nova equação para o
amortecimento colisional, e nele comparamos o resultado da integração
numérica dessa
expressão, com a largamente usada \emph{fórmula de Spitzer}. Com isso
conseguimos mostrar que a aproximação de Spitzer super-estima em muito
a intensidade da atenuação colisional das ondas de plasma. Além disso,
% LFZ180220: Aqui o ordenamento das frase já estava adequado, e de acordo com
% a mudança proposta no "abstract". So faço uma pequena mudança no texto. OK?
%a insignificância da taxa de amortecimento colisional se comprova quando
% Sabrina: OK
a falta de relevância da taxa de amortecimento colisional fica
demonstrada quando
a comparamos com a taxa de amortecimento não colisional (de Landau).
No segundo trabalho, nós analizamos o até então ignorado efeito de
\emph{bremsstrahlung} eletrostático. Nó mostramos que a presença da
emissão de \emph{bremsstrahlung} eletrostático modifica o espectro
das ondas de Langmuir que, por sua vez, altera a forma da função de
%distribuição inicial dos elétrons, que é Maxwelliana. Após um longo
% LFZ180220: Mudança compatível com a mudança proposta no "abstract".
% Sabrina: OK
distribuição inicial dos elétrons, suposta Maxwelliana. Após um longo
tempo de evolução temporal (integração numérica), o sistema parece
chegar a um novo estado quase-estacionário, no qual a forma da função
de distribuição de velocidades dos elétrons lembra a forma de uma função
de distribuição núcleo-halo, ou seja, composta por um núcleo Maxwelliano e
uma cauda supratérmica. Os resultados de ambas análises são sem precedentes;
as perspectivas e as possibilidades para novos estudos neste assunto são
promissoras.
% Sabrina: não sei se preciso mencionar este trabalho aqui, mas coloquei
% mesmo assim. Se achares denecessário, é só comentar o trecho a seguir:
% LFZ180220: Mudança proposta similar à que foi proposta no "abstract":
%No final é também apresentado um resultado extra, relativo à
% Sabrina: OK
No final é também apresentado um resultado extra, indiretamente relacionado
ao assunto principal desse projeto de trabalho de doutorado, relativo à
análise do conjunto completo de equações eletromagnéticas da teoria de
turbulência fraca, na presença de uma função de distribuição de velocidades
núcleo-halo.
%Este trabalho, no entanto, não tem relação com o assunto
%principal dessa proposta de trabalho de doutorado.
\end{abstract}
\end{otherlanguage}
% \input{resumo}
\pagenumbering{roman}
\tableofcontents{\thispagestyle{empty}}
%\listoffigures{\thispagestyle{empty}}
\pagestyle{fancy}
\pagenumbering{arabic}
\fancyhf{}
\renewcommand{\headrulewidth}{0.5pt}
\lhead{\nouppercase{\it \leftmark}}
\rhead{\thepage}
\setcounter{page}{0}
% LFZ180216: O título não está aqui, mas pode ser discutido um pouco.
% A questão é que parece dar ênfase demais a processos colisionais. A gente
% estuda a evolução temporal do sistema, incluindo processos colisionais. Parece
% meio forte dizer que se estuda a evolução de processos colisionais, apenas.
% Por outro lado, se ficar assim, acho que deve ser "collisional processes"
% em lugar de "colisional process"
% Sabrina: Eu mudei um pouco o título pra incluir a teoria de turbulência
% fraca. Ficou meio grande, mas fazer o quê? Não tirei "plasmas
% astrofísicos" porque acho que dá uma vaga ideia de com que tipo de plasma
% estamos lidando. Eu acho melhor do que escrever "low density and fully
% ionized plasmas", o que deixaria o título maior ainda. Mas, se achares
% necessário, posso tirar a menção a plasmas astrofísicos e deixar sem nada
% que caracterize o plasma, ou colocar "low density and fully ionized plasmas".
% O que achares melhor.
% Sabrina 20/02: Sem comentários a respeito do título?
\chapter{Introduction}
\label{cha:intro}
In the context of the plasma kinetic theory, processes
involving waves and kinetic instabilities, the so-called\emph{
collective processes}, are almost exclusively associated with
situations in which the effects of collisional dissipation can
be neglected, what happens when the studied phenomenon evolves
in a much shorter
% LFZ180216: "much shorter" ?
% Sabrina: OK
time-scale than the collisional relaxation time
of the plasma in question \cite{akhi1967}. In such cases, the
plasma dynamics may be described by the Vlasov-Maxwell system,
% LFZ180216: Acho que vai vírgula depois de "system"
% Sabrina: OK
a complex set of coupled equations whose solution invariably will
depend on some degree of approximation. In the presence of small
amplitude oscillations in a fully ionized plasma, we can make use
of perturbation theory in order to solve such complicated system
\cite{klimo}. From this method, one may obtain simpler approximations
like the linear theory and the quasilinear formalism, and also
more complex formulations, like the weak turbulence theory, which
takes into account low-order nonlinearities on the plasma dynamics.
With the lowest order of this chain of perturbative approximations,
the linear theory, it is possible to obtain the dispersion relations,
mathematical expressions that not only help us on identifying the
different oscillatory modes that may be excited in plasmas, but also
wholly characterizes these oscillations.
% LFZ180216: Como está no plural, "dispersion relations", acho que a frase
% deve seguir como:
% "mathematical expressions that not only help us on identifying the
% different oscillatory modes that may be excited in plasmas, but also
% wholly characterize these oscillations."
% Sabrina: OK
Valuable information like
how these waves propagate and the frequencies that will resonate with
the plasma particles, resulting in damping or amplification of these
% LFZ180216: "of these"?
% Sabrina: OK
oscillations \cite{bitt,chen,gurnett2017}, are given by the dispersion
relations. This information, however, is static.
% LFZ180216: "is static", ao invés de "it is static"? Acho que o sujeiro já
% é "This information", não precisa do "it".
% Sabrina: OK
There is no way to
know, based solely on the linear formulation, any further development
of the system, how these waves will evolve in time from a given initial
state, for instance. Thus, to clarify if these oscillations will grow
until their amplitudes become too large to be treated by a perturbative
method, or if they will rapidly increase and saturate, or if they will
be completely damped, or if they will decrease a little and then saturate,
a certain degree of nonlinearity must be taken into account. That is the
purpose of the quasilinear approximation.
% LFZ180216: Sugestão:
% "Thus, to clarify if these oscillations will grow
% until their amplitudes become too large to be treated by a perturbative
% method, or if they will rapidly increase and saturate,
% or if they will be completely damped,
% or if they will decrease a little and then saturate,
% a certain degree of nonlinearity must be taken
% into account. That is the purpose of the quasilinear approximation."
% Sabrina: OK
In the quasilinear theory, low-order nonlinear terms are kept in
the equation for the time evolution of the velocity distribution
function. The velocity distribution will then evolve in time
through a process of diffusion in velocity space,
% LFZ180216: Acho que não está errado, mas me parece melhor "through a
% process of diffusion in velocity space,"
% Sabrina: OK
in which the diffusion
coefficient depends on the spectral energy density of the waves.
The dispersion relation is formally given by the same expression
obtained under the linear theory, except that now it
depends on a time-dependent velocity distribution function,
% LFZ180216: Suggestion: depends on a time-dependent velocity
% distribution function,
% Sabrina: OK
which must vary in a much slower
time-scale than the period of the plasma oscillations. Under such
condition, the gradual changing on the velocity space shape slowly
modifies the wave spectrum, whose new form will then alter the
velocity distribution function and so on, until a new quasi-stationary
equilibrium state is attained \cite{gurnett2017}. However, depending
on the phenomenon being described this saturation state reached
under the quasilinear approximation might keep on evolving if higher
order nonlinearities are taken into account \cite{akhi2}. This kind
of nonlinear analysis is given by the \emph{weak turbulence theory},
which is the next step in this chain of perturbative approximations.
Mostly developed in the period between the late $1950$s and early
$1970$s \cite{Kadomtsev1965,Tsytovich1967,saggal,tsynlep,david,
tsyitotp,akhi2,tsytotp,mel}, the weak turbulence theory has
become a valuable theoretical tool for the analysis of nonlinear
phenomena in plasmas since then, being applied in several studies
until nowadays \cite{Grognard1982,McClements87b,Hanssen1991,
Edney2001,Kontar2001,Kontar2002,THD13}. Its complex formulation
is constituted by a set of coupled kinetic equations, which describe
the time evolution of the velocity distribution functions of the
plasma particles and the time evolution of the spectral intensities of
the plasma wave modes. The development of the weak turbulence theory
was resumed in a relatively recent series of papers, where the author,
starting from first principles, has extended the original formalism in
order to include new effects. In the initial work, it was considered
only the propagation of electrostatic oscillations,
% LFZ180216: Em lugar do trecho acima, acho melhor dizer "it was considered
% only the propagation of electrostatic oscillations,"
% Isso porque a frase anterior falava que novos efeitos tinham sido
% incluidos ao formalismo, e dessa forma o "added" parece indicar que as
% oscilações eletrostáticas foram adicionadas, como novos efeitos, e não
% é o caso.
% Sabrina: OK
taking into account the
effects of both wave-wave and wave-particle interactions \cite{Yoon00}.
Later, the formalism was expanded, and the effects of discrete particle,
% LFZ180216: "discrete particle effects"?
% Sabrina 20/02: acho que passei batido por esse antes...
related to spontaneous emission and spontaneous scattering processes
were included \cite{Yoon05a}. In a further extension, the effects of
the propagation of electromagnetic waves were incorporated into the
revised formulation \cite{Yoon06,Yoon2012b}.
The equations of this revised version of the weak turbulence theory
have been the subject of extensive studies involving nonlinear analysis
and two-dimensional numerical integration applied to the time evolution
of the Langmuir turbulence \cite{ZGPY08,Ziebell2012,YZGLW12,
ZYGP14a,ZYGP14b} in a fully ionized and unmagnetized plasma, and in
other studies that also include the emission of electromagnetic waves
\cite{ZYSGP14c,ZYPGP15,ZPYGP16}. Some studies
using a one-dimensional approach have also been made
\cite{ZiebellGY01,GaelzerZY02,GZVYR08}.
% LFZ180216: Nessa parte final da frase a ideia não era dizer "other studies
% that also include the emission of electromagnetic waves"?
%
% Sabrina: Pode ser. Acho, traduzi mal o texto do plano de pesquisa
% para o PDSE.
% LFZ180220: No plano para o PDSE havia uma frase mais ambígua do que essa que
% propus aqui. Dizia "estudo de processos de emissão envolvendo ondas de
% Langmuir". Nota que se diz "processos de emissão", sem especificar o tipo.
% E depois "envolvendo ondas de Langmuir". Não era apenas "emissão de ondas
% de Langmuir", como tinhas escrito na primeira versão. Poderíamos colocar
% a mesma frase do PDSE, mas acho que esta que diz "also include the emission
% of electromagnetic waves" também serve. A frase anterior fala em turbulência
% de Langmuir", e essa fala em "also include" outros efeitos. OK?
% Sabrina: OK
%
% LFZ180216: Outra coisa: Poderia haver aqui uma frase como "Some studies
% using a one-dimensional approach have also been made
% \cite{ZiebellGY01,GaelzerZY02,GZVYR08}."
% Na verdade, essa referência GZVYR08, se aparecer aqui assim como sugiro, deve
% sair da frase anterior onde estão mmencionadas análises bi-dimensionais.
% Sabrina: Desculpa, mas não entendi bem como escrever essa parte, até porque
% tenho pouca familiaridade com esses trabalhos em 1D. Na verdade não tenho eles
% nem em bibtex, nem em pdf. Mas se quiseres editar o texto para colocar eles
% e adicionar o bibtex no papers.bib, ficarei muito agradecida. Se eu for fazer
% isso, vai me tomar um tempo que infelizmente não tenho...
% LFZ180220: OK, vou fazer a mudança conforme estava proposto, e adicionar as
% referências.
% Sabrina: Obrigada!
The Langmuir turbulence is a by-product
% LFZ180216: "by-product"?
% Sabrina: OK
of the instability generated when an energetic electron beam interacts with
a background plasma. The electron beam alters the electron velocity
distribution triggering the so-called \emph{bump-in-tail instability}.
Besides being recurrently used in textbooks as an illustrative example
of the quasilinear diffusion process \cite{akhi2,chen,gurnett2017}, the
bump-in-tail instability also has an essential role in the study of type
II and type III radio bursts \cite{Emslie1984,Hannah2009,ZVST11,Hannah2011,
KK12,RR14,BNKR14}. In this context, the relevance of a more accurate
description of nonlinear kinetic instabilities in plasmas, represented
here by the beam-plasma interaction, becomes clear.
The next step towards a more complete description of weakly-turbulent
processes in plasmas is the inclusion of collisional effects in the
formalism. So far, the effects of binary collisions have been neglected
under the time-scale argument, mentioned in the first paragraph. This
assumption can be considered quite precise for the evolution of the
bump-in-tail instability under the quasilinear approximation. In such
regimen, the plasma quickly saturates in a quasi-equilibrium state and
the time evolution entirely ceases. However, when nonlinear processes
are considered in the dynamics, one cannot be sure if this argument
still holds. Basically, for the system to evolve inside the weak
turbulence theory limitations, the incident beam must be tenuous, and
the oscillations must have low amplitude (after all, the turbulence
ought to be weak). Under such conditions, the time evolution of the
system occurs in a time interval that is way longer than the oscillation
period of the plasma waves being studied. In fact, there are studies that
show that nonlinear effects keep acting in the system in a time-scale that
goes far beyond than the saturation time of the quasilinear instability,
to the extent that an asymptotic analysis of the new quasi-equilibrium
state of the turbulent process becomes relevant \cite{Yoon2012c,ZYGP14a,
ZYGP14b,ZYSGP14c,ZYPGP15}.
The hypothesis about the probable relevance of binary
collisions in the nonlinear dynamics of the beam-plasma
interaction was numerically tested in \cite{Tigik2016a}.
In this work a linearized form of the Landau collision
integral was added into the particle kinetic equation
and the complete self-consistent set of electrostatic
weak turbulence equations was numerically integrated in
two-dimensions. It was shown that collisions indeed do
affect the plasma dynamics in a time-scale that is very
close to the time-scale of action of nonlinear effects.
Beyond the purely theoretical conjecture, combining
collective processes and collisional effects have some
important applications in solar physics. In the solar
hard X-ray analysis, for instance, the interpretation
models that employ quasilinear/nonlinear oscillatory
instabilities with some kind of collisional dissipation
(collisional damping for the waves, binary collisions for
the particles) are usually empirically adapted merely by
adding an \emph{ad hoc} expression into the particles and wave
kinetic equations to fit the observed data \cite{PK95,
Kohl1998,Veronig05,Brown2006,Kontar2011,KKDSSK11}, yet,
there is no rigorous theory to compare or support such
models. Moreover, though the formalism in \cite{Tigik2016a}
makes use of the full Landau collision integral in the
particle kinetic equation, it does not take into account
collisional damping effects in the wave equation, which is
widely used in these empirical models. The point is: until
that moment, there was not a proper theoretical tool to deal
with the combination of collective processes and collisional
interaction.
In a recent paper \cite{YZKS16}, it was presented the first rigorous
theory that, starting from first principles, incorporates collisional
effects into the already well established weak turbulence formalism.
The authors used
% LFZ180216: Acho que podes escrever "The authors used ..." e mais abaixo na
% frase "they also kept ...", ou então "The authors use ..., they also keep".
% Como está misturas dois tempos verbais na mesma frase.
% Sabrina: OK, corrigi para "used"
the same standard weak turbulence perturbative method
but, instead of keeping only the collective eigenmodes in the linear
and nonlinear wave-particle interactions, they also kept the effects
of the non-collective fluctuations emitted by thermal particles. The
outcome is a complete first principles nonlinear description of the
propagation of electrostatic oscillations in the presence of both wave
and particle collisional dissipation, and a hitherto unknown process.
This new effect depicts the emission of electrostatic radiation in the
eigenmode frequency range, which is caused by particle scattering.
Since this is a form of braking radiation,
% LFZ180216: "braking radiation"?
% Sabrina: OK
the authors named it as
\emph{electrostatic bremsstrahlung}.
Considering the context presented above, the working proposal of
this PhD Thesis is to put forward the first numerical analysis of
the new weak turbulence theory for collisional plasmas \cite{YZKS16}
and explore its applications in the solar physics scope. In
\Cref{cha:kin-theo} and \Cref{cha:weak-turb}, we make a brief review
of the basic plasma kinetic theory equations and the weak turbulence
theory, respectively. In \Cref{noneigenmode}, we introduce the
new generalization of the weak turbulence theory, which takes into
account the contribution of noneigenmode fluctuations during the
derivation of the particle and wave kinetic equations, resulting
in three new terms. In \Cref{main}, we contextualize the present
work regarding the theory discussed in the previous chapter and
present the results obtained so far by appending the two papers
published in this subject. In \Cref{cha:final}, we summarize the
results and discuss the perspectives of the present research.
Then, we propose a schedule for the remaining period
% LFZ180216: "for the remaining period"?
% Sabrina: OK
until the thesis
defense. In the end we have three appendices. \Cref{appA} shows
an improved approximation for the second order susceptibility of
the electrostatic bremsstrahlung for Langmuir waves. \Cref{appB}
presents a discussion about the asymptotic equilibrium state of the
Langmuir waves spectrum, considering a combination of a inverse
power-law kappa distribution and a Maxwellian distribution, in the
presence and in the absence of the electrostatic bremsstrahlung.
% LFZ180216: Tenho a impressão que essa última frase dá uma impressão errada.
% Se bem me lembro, é suposta a presença de uma distribuição do tipo
% "inverse power-law", mas na hora de calcular o bremsstrahlung se usa uma
% Maxwelliana. Sugiro uma frase mais ambígua, que não entra em detalhes, mas
% não diz que o bremsstrahlung foi calculado com a "Kappa". Por exemplo,
% "presents a discussion about the asymptotic equilibrium state of the
% Langmuir waves spectrum, considering a combination of a inverse power-law
% kappa distribution and a Maxwellian distribution, in the presence and in the
% absence of the electrostatic bremsstrahlung."
% Sabrina: OK
The discussion in \Cref{appB} is
related with the article appended in \Cref{appC}, which is a
parallel research and is only slightly related with the main
subject of this work, that is the study of the combined action
of collective and collisional processes in weakly turbulent
plasmas, in the presence of electrostatic oscillations.
\chapter{Kinetic theory}
\label{cha:kin-theo}
The kinetic theory is the most fundamental description of the
plasma dynamics. Based on the concepts and methods of statistical
mechanics, together with the Maxwell equations, it provides a
formal self-consistent evolution of the plasma processes. This
formalism takes into account the variations of the velocity
distribution function $f({\bf r},{\bf v},t)$ in the phase-space
for each particle species. Statistically, this means that the
product between the distribution function and the volume element
in the hexa-dimensional phase-space $f_\alpha({\bf r},{\bf v},t)d^3r d^3v$
represents the probability of finding a particle of species
$\alpha$ in a volume element $d^3r$ around ${\bf r}$ and in a
velocity volume element $d^3v$ around ${\bf v}$, at the instant
$t$ \cite{klimo,klimon}.
% LFZ180216: Acho que deve ser "instant $t$" (ou seja, $t$ em itálico).
% Sabrina: OK
As mentioned before, in the absence of collisions, the plasma
dynamics is given by the Vlasov-Maxwell system, which is composed
by the Vlasov movement equation
\begin{equation}
\label{eq:vlasov}
\frac{\partial f_{\alpha}({\bf r},{\bf v},t)}{\partial t}
+{\bf v \cdot \nabla_r}f_{\alpha}({\bf r},{\bf v},t)
+\frac{q_{\alpha}}{m_{\alpha}}
\left({\bf E}({\bf r},t)+\frac{1}{c}{\bf v}\times {\bf B}({\bf r},t) \right)
{\bf \cdot \nabla_v}f_{\alpha}({\bf r},{\bf v},t)=0,
\end{equation}
where the fields are described by the Maxwell equations
\begin{eqnarray}
\label{max1}
{\bf \nabla \cdot E}&=& 4\pi\rho\\
\label{max2}
{\bf \nabla \cdot B}&=& 0\\
\label{max3}
{\bf \nabla \times E}&=& -\frac{1}{c}
\frac{\partial \bf B}{\partial t}\\
\label{max4}
{\bf \nabla \times B}&=& \frac{4\pi}{c}{\bf J}
+\frac{1}{c}\frac{\partial{\bf E}}{\partial t},
\end{eqnarray}
here given in cgs units, as commonly used in the
plasma physics literature.
In a statistical description, the charge density $\rho$
and the current density ${\bf J}$ depend on the velocity
distribution function
\begin{eqnarray}
\label{qdensity}
\rho({\bf r},t)
&=&\sum_{\alpha}q_{\alpha}\int_v
f_{\alpha}({\bf r},{\bf v},t)d^3v\\
\label{jdensity}
{\bf J}({\bf r},t)
&=&\sum_{\alpha}q_{\alpha}\int_v{\bf v}
f_{\alpha}({\bf r},{\bf v},t) d^3v,
\end{eqnarray}
where $\alpha$ accounts for all charged species that constitute
the plasma. In a fully ionized hydrogen plasma, $\alpha=i$ for
ions and $\alpha=e$ for electrons.
Together, the expressions \eqref{eq:vlasov}, \eqref{max1},
\eqref{max2}, \eqref{max3}, \eqref{max4}, \eqref{qdensity}
and \eqref{jdensity} form a closed self-consistent set
of coupled nonlinear equations, which is responsible for the
description of a myriad of oscillatory processes that may
occur in plasmas and how they affect (and are affected by) the
velocity distribution function, in the absence of collisions.
The solution of such complicated system will invariably depend
on some degree of approximation.
Considering the extensive variety of nonlinear processes that
might occur in a plasma, the appropriate way to deal with these
equations will depend on intrinsic characteristics of the plasma
and the nature of the phenomenon under consideration. For low
amplitude oscillations in a fully ionized plasma, one may employ
perturbation theory in order to solve the Vlasov equation
\cite{klimo}.
\subsection{Low amplitude electrostatic oscillations}
We are interested in the presence of high-frequency electrostatic
waves propagating in a homogeneous, fully ionized and unmagnetized
plasma, which is initially in equilibrium. Under such conditions,
we may consider ${\bf B=0}$. Thus, the Vlasov equation takes the
following form
\begin{equation}
\label{vlasov-elec}
\frac{\partial f_\alpha}{\partial t}+{\bf v \cdot \nabla}f_\alpha
+\frac{q_{\alpha}}{m_\alpha}\ {\bf E}\ {\bf\cdot \nabla_v}f_\alpha=0,
\end{equation}
where the electric field is given by
\begin{equation}
{\bf \nabla \cdot E} = 4\pi\ \sum_\alpha q_\alpha
\int_v f_\alpha({\bf r},{\bf v},t) d^3v.
\label{leidegauss}
\end{equation}
Assuming low amplitude oscillations, we may approximate these equations
by introducing a small first order perturbation into the initial velocity
distribution function and, assuming ${\bf E}_0=0$, we introduce a small
first order electric field :
\begin{eqnarray}
\label{fpert}
f_{\alpha}({\bf r}, {\bf v},t)&=&f_{\alpha0}({\bf v})
+f_{\alpha1}({\bf r}, {\bf v},t),\\
{\bf E}({\bf r},t)&=&{\bf E}_1({\bf r},t).
\label{Epert}
\end{eqnarray}
Until this point, the linear, quasilinear and nonlinear formulations
are identical. For a further evaluation we must decide if substitute
Eqs. \eqref{fpert} and \eqref{Epert} in Eq. \eqref{vlasov-elec} as they
are and then eliminate all nonlinear terms in the Vlasov equation. Or if
we take the average of Eqs. \eqref{fpert} and \eqref{Epert} and use the
averaged quantities to keep some degree of nonlinearity in the movement
equation. The subsequent deduction for each case was carefully detailed
and discussed in Chapters 2 and 3 of Ref. \cite{Tigik2015}. Therefore,
in order to maintain the focus on the objectives of the present work, we
% LFZ180216: Ao invés da frase acima, que tal a seguinte:
% "in order to maintain the focus on the objectives of the present work, we" ?
% Sabrina: OK
reproduce in the next chapter only a brief review of the deduction of
the weak turbulence theory equations.
\chapter{Weak turbulence theory}
\label{cha:weak-turb}
The weak turbulence theory is what we may call a ``borderline approach''
because, despite the fact that it deals with some more intense
instabilities, we must assure that these fluctuations are still inside
the weak turbulence limit, i.e., if the turbulence is weak enough to be
treated by a perturbative method. Such boundary is defined by a comparison
between the averaged kinetic energy of the particles per volume unity
$\calE_{kin}=\bar n m<v^2>/2$, and the energy density $\calE_f$, which
is associated with the fluctuations of the perturbative electric field.
Thus, by ``weak turbulence'' we mean
\begin{equation}
\label{eq:weak}
\calE_f \ll \calE_{kin},
\end{equation}
that is,
% LFZ180216: Não fica melhor com vírgula depois de "that is"?
% Sabrina: OK
the energy density of the fluctuations must be much smaller
% LFZ180216: Ou simplesmente "much smaller"?
% Sabrina: OK
than the kinetic energy density of the particles. This condition is
related to the slow wave-growing assumption \cite{david}, which is
central for the further development of nonlinear kinetic equations,
as will be discussed further.
The following discussion is a reduced version of the
comprehensive demonstration presented in Section 3.2 of
Ref. \cite{Tigik2015}. We also use the same notation and
logic sequence. Any deviation from \cite{Tigik2015} will
be explained in a footnote.
\section{Nonlinear kinetic equations}
\label{sec:kin-gen-eq}
Let us consider the propagation of electrostatic oscillations
in a homogeneous, unmagnetized and fully ionized plasma. Thus,
in the absence of collisions, the movement equation is given
by the electrostatic Vlasov equation
\begin{equation}
\label{vlasov-nl}
\frac{\partial f_a({\bf r}, {\bf v},t)}{\partial t}
+{\bf v \cdot \nabla}f_a({\bf r}, {\bf v},t)
+\frac{e_a}{m_a}{\bf E}({\bf r},t){\bf \cdot}
\frac{\partial f_a({\bf r},{\bf v},t)}{\partial \bf v}=0,
\end{equation}
where the electric field is given by
\begin{equation}
{\bf \nabla \cdot E}({\bf r},t)
=4\pi \hat n \sum_a e_a\int d^3 v f_a({\bf r}, {\bf v},t).
\end{equation}
In the above equations, $f_a$ is the velocity distribution function,
where the subscript ``$a$'' is the kind of particle: $a=i$ for ions
and $a=e$ for electrons. For an overall neutral plasma, the number
density of
% LFZ180216: Sugestão "the number density of"
% Sabrina: OK
the ions and the electrons is the same $\hat n = \hat n_e = \hat n_i$.
Proceeding under the perturbative approach, we assume small
fluctuations and write the velocity distribution function
and the electric field as a sum of an equilibrium zero-order
term and a small first-order fluctuation
\begin{equation}
\label{pert-nl}
\begin{split}
f_a({\bf r}, {\bf v},t)&=F_a({\bf v})+\delta f_a({\bf r}, {\bf v},t)\\
{\bf E}({\bf r},t)&=\delta {\bf E}({\bf r},t),
\end{split}
\end{equation}
where the zero-order electric field is assumed to be zero and
$F_a$ is the equilibrium velocity distribution.
Substituting \eqref{pert-nl} in \eqref{vlasov-nl} we obtain
\begin{equation}
\frac{\partial F_a}{\partial t}-\frac{e_a}{m_a}\
\delta {\bf E \cdot} \frac{\partial F_a}{\partial \bf v}
+\frac{\partial\ \delta f_a}{\partial t}+{\bf v \cdot \nabla} \delta f_a
+\frac{e_a}{m_a}\ \delta {\bf E \cdot}
\frac{\partial\ \delta f_a}{\partial \bf v}=0.
\label{turb_ave_vlasov}
\end{equation}
Taking the average\footnote{For more details see subsection 3.1.1
of Ref. \cite{Tigik2015}.} of Eq. \eqref{turb_ave_vlasov}, we
obtain a kinetic equation for the time evolution of the equilibrium
velocity distribution function
\begin{equation}
\frac{\partial F_a}{\partial t}
=-\frac{e_a}{m_a}\left< \delta {\bf E \cdot}
\frac{\partial\ \delta f_a}{\partial \bf v}\right>.
\label{form_par}
\end{equation}
Subtracting \eqref{form_par} from \eqref{turb_ave_vlasov} we obtain
an equation for the fluctuations
\begin{equation}
\frac{\partial\ \delta f_a}{\partial t}+{\bf v \cdot \nabla} \delta f_a
+\frac{e_a}{m_a}\ \delta {\bf E \cdot} \frac{\partial F_a}{\partial t}
+\frac{e_a}{m_a}\left[\delta {\bf E \cdot} \frac{\partial\ \delta f_a}{\partial \bf v}
-\left< \delta {\bf E \cdot}
\frac{\partial\ \delta f_a}{\partial \bf v}\right>\right]=0.
\label{flut}
\end{equation}
It is interesting to mention that at this stage, Eqs. \eqref{form_par}
and \eqref{flut} are precisely the same as those leading to the
quasilinear approximation.
% LFZ180216: Sugiro "are precisely the same as those leading to the
% quasilinear approximation."
% Sabrina: OK
Thus, at this point, one must choose whether the quasilinear approach
is enough or if a nonlinear formulation is necessary. In the first case
all terms proportional to $\delta {\bf E} \delta f_a$ are neglected in
the equation for the fluctuations\footnote{See subsection 3.1.2 of
\cite{Tigik2015}.}. We shall keep these terms and proceed with the
nonlinear approach.
Now we assume the fluctuations may be decomposed in terms of the
Fourier-Laplace transformation over the fast time-scale of the
fluctuations, while amplitudes of the spectra vary in a slow
time-scale
\begin{equation}
\begin{split}
\delta f_a({\bf r}, {\bf v},t)
&=\int d^3k \int_L d \omega\
\delta f^a_{{\bf k}, \omega}({\bf v}, t)e^{i({\bf k \cdot r}-\omega t)},\\
\delta f^a_{{\bf k}, \omega}({\bf v}, t)
&=\frac{1}{(2 \pi)^4} \int d^3 r \int_0^{\infty} dt\
\delta f_a({\bf r}, {\bf v},t) e^{-i({\bf k \cdot r} - \omega t)},\\
\delta {\bf E}({\bf r},t)
&=\int d^3 k \int_L d \omega\ \delta {\bf E}_{{\bf k},\omega}(t)
e^{i({\bf k \cdot r}-\omega t)},\\
\delta {\bf E}_{{\bf k},\omega}(t)
&=\frac{1}{(2 \pi)^4}\int d^3 r \int_0^{\infty} dt\
\delta {\bf E}({\bf r},t) e^{-i({\bf k \cdot r} - \omega t)},
\end{split}
\end{equation}
% LFZ180216: Na última equação o denominador deve ser (2\pi)^4 ao invés de
% 2\pi^4, não?
% Sabrina: OK
where the integration path is taken along $L$, stretching from
$\omega = -\infty +i\sigma$ to $\omega=\infty+i\sigma$, in which
$\sigma >0$ and $\sigma \rightarrow 0$. We should emphasize that
we assume slow and adiabatic time-dependence for the spectral
amplitudes $\delta f^a_{{\bf k},\omega}({\bf v},t)$ and
$\delta {\bf E}(t)_{{\bf k}, \omega}$ in the above transformation.
The Fourier-Laplace transformation of nonlinear terms, where we
have the product of two functions, is given by the convolution
of these functions
\begin{equation}
\begin{split}
\frac{1}{(2\pi)^4}\int d^3r \int dt\ \delta f_a({\bf r}, {\bf v},t)\
\delta {\bf E}({\bf r},t)\ e^{-i({\bf k \cdot r}-\omega t)}
&=\int d^3 k' \int d \omega '\ \delta f^a_{{\bf k'}, \omega '}\
\delta {\bf E}_{{\bf k-k'},\omega-\omega '}\\
&=\int d^3 k' \int d \omega '\ \delta f^a_{{\bf k-k'}, \omega-\omega '}\
\delta {\bf E}_{{\bf k'},\omega '}.
\end{split}
\label{conv}
\end{equation}
Applying these transformations to the Vlasov-Maxwell system, we
obtain a set of hierarchic equations composed by the formal
particle kinetic equation \cite{Yoon00}
\begin{equation}
\frac{\partial F_a}{\partial t}=-\frac{e_a}{m_a}\frac{\partial}{\partial {\bf v}}
{\bf \cdot}\int d^3k \int d\omega \int d^3k'\int d\omega '\
\left<\delta{\bf E}_{{\bf k'},\omega '}\ \delta f^a_{{\bf k},\omega}\right>
e^{i({\bf k+k'}){\bf \cdot r}-i(\omega+\omega ')t};
\label{eq-cin-par}
\end{equation}
the equation of the fluctuating distribution evolution
\begin{equation}
\begin{split}
\left(\omega-{\bf k \cdot v}
+i\frac{\partial}{\partial t}\right)\delta f^a_{{\bf k},\omega}
&=-i \frac{e_a}{m_a} \delta {\bf E}_{{\bf k},\omega}{\bf \cdot}
\frac{\partial F_a}{\partial \bf v}
-i\frac{e_a}{m_a}\frac{\partial}{\partial \bf v}
{\bf \cdot} \int d^3k' \int d\omega '\\
\times \bigr[\delta {\bf E}_{{\bf k'},\omega '}
\delta f^a&_{{\bf k-k'},\omega-\omega '}
-\left<\delta {\bf E}_{{\bf k'},\omega '}
\delta f^a_{{\bf k-k'},\omega-\omega '}\right>\bigr];
\end{split}
\label{ev-par-per}
\end{equation}
and the differential form of the Gauss law for the electric field fluctuations
% and the Poisson equation for the electric field fluctuations
% LFZ180216: Aqui há um ponto que às vêzes me incomoda. O uso desse nome é
% frequente, o Peter costuma usá-lo, e "no embalo" eu uso muitas vêzes também.
% Mas a rigor a equação de Poisson é uma equação com o Laplaciano do potencial,
% não com a divergẽncia do campo (essa seria a lei de Gauss). É de se pensar
% se mantemos o costume, ou se vale a pena mudar ...
% (se mexer aqui tem que mudar mais adiante também)
% Sabrina: Pode ser assim?
% LFZ180220: Pode ser, com a mudança mais abaixo acompanhando.
\begin{equation}
{\bf k \cdot}\delta{\bf E}_{{\bf k},\omega}=-4\pi \hat n i
\sum_a e_a\int d^3v\ \delta f^a_{{\bf k}, \omega}.
\label{poisson-flut}
\end{equation}
The bracketed terms in Eqs. \eqref{eq-cin-par} and \eqref{ev-par-per}
represent the ensemble averages over the phases of the perturbation. One
may notice that the above set of equations is not closed, since the solution
for $\delta f^a_{{\bf k},\omega}$ requires knowing the two-body correlation
$\left<\delta f^a_{{\bf k},\omega}\delta f^a_{{\bf k'},\omega '}\right>$,
which depends on the tertiary correlation $\left<\delta f^a_{{\bf k},\omega}
\delta f^a_{{\bf k'},\omega '}\delta f^a_{{\bf k''},\omega ''}\right>$, and
so on.
On the left-hand side of Eq. \eqref{eq-cin-par} we have retained the
slow adiabatic derivative $i(\partial/\partial t)$. To deal with
that we employ two-step approximation \cite{Yoon00} and redefine
the angular frequency $\omega \rightarrow \omega+i \partial/\partial t$.
Then the equation for the
% LFZ180216: "the perturbed"?
% Sabrina: OK
perturbed distribution may be iteratively
solved up to third order in electric field. The solution is then
inserted into Eq. \eqref{poisson-flut}
% the perturbed Poisson equation
% LFZ180216: Se o nome Poisson foi mudado anteriormente, deve ser mudado aqui
% também.
% Sabrina: coloquei o número da equação no lugar. Pode ser?
% LFZ180220: OK
and, under the assumption that there are random phases associated with
the fluctuations, we take the appropriated ensembles averages. This
procedure results in the nonlinear spectral balance equation.
And is at this point, according to the two-time approximation, the
slow time derivative is reintroduced \cite{YZKS16}. This procedure
results in the nonlinear spectral balance equation\footnote{Equation
\eqref{nlebe} is not in the same form that appears in Refs.
\cite{Yoon00,Tigik2015}. The reason for this choice (see Eq. 2.59
of Ref. \cite{YZKS16}), will become clear in the next chapter.}
\begin{eqnarray}
&&\frac{i}{2}\frac{\partial \epsilon({\bf k},\omega)}{\partial \omega}
\frac{\partial \left<\delta E^2\right>_{{\bf k},\omega}}{\partial t}
+\mbox{Re}\,\epsilon({\bf k},\omega)\left<\delta E^2 \right>_{{\bf k},\omega}
+i\mbox{Im}\,\epsilon({\bf k},\omega)\left<\delta E^2 \right>_{{\bf k},\omega}
\nonumber\\
&&\qquad \qquad \qquad -\frac{2}{\pi}\frac{1}{k^2\epsilon^*({\bf k},\omega)}
\sum_ae_a^2\int d{\bf v}\,\delta(\omega-{\bf k\cdot v})F_a({\bf v})
\nonumber\\
&&=-2\int d{\bf k'} \int d\omega '\
\biggl\{ \left[\chi^{(2)}({\bf k'},\omega '|{\bf k-k'},
\omega-\omega ')\right]^2
\biggl[\frac{\left<\delta E^2\right>_{{\bf k-k'},\omega-\omega '}}
{\epsilon({\bf k'},\omega ')}
\nonumber\\