-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
50 lines (37 loc) · 1.48 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
from langchain_openai import OpenAIEmbeddings
from langchain_community.vectorstores import Chroma
from langchain.prompts import ChatPromptTemplate
from langchain_openai import ChatOpenAI
import argparse
CHROMA_PATH = "chroma"
PROMPT_TEMPLATE = """
Answer the question based only on the following context:
{context}
---
Answer the question based on the above context: {question}
"""
def main():
# Create CLI.
parser = argparse.ArgumentParser()
parser.add_argument("query_text", type=str, help="The query text.")
args = parser.parse_args()
query_text = args.query_text
# Prepare the DB.
embedding_function = OpenAIEmbeddings()
db = Chroma(persist_directory=CHROMA_PATH, embedding_function=embedding_function)
# Search the DB.
results = db.similarity_search_with_relevance_scores(query_text, k=3)
if len(results) == 0 or results[0][1] < 0.7:
print("The query is not relevant to the Rag Model.")
return
context_text = "\n\n---\n\n".join([doc.page_content for doc, _score in results])
prompt_template = ChatPromptTemplate.from_template(PROMPT_TEMPLATE)
prompt = prompt_template.format(context=context_text, question=query_text)
# print(prompt)
model = ChatOpenAI()
response_text = model.invoke(prompt)
sources = [doc.metadata.get("source", None) for doc, _score in results]
formatted_response = f"Response: {response_text}\nSources: {sources}"
print(formatted_response)
if __name__ == "__main__":
main()