-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlocal_grb_gfs2am.py
404 lines (335 loc) · 21.2 KB
/
local_grb_gfs2am.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
#!/usr/bin/env python
#
# gfs2am.py - For a given site latitude, longitude, and altitude, this
# script will download an appropriately-subsetted GFS forecast file in
# grib2 format from the NOAA Operational Model Archive Distribution
# System (NOMADS), then generate a corresponding set of am layers
# interpolated to the site position.
import argparse
import datetime
import dateutil.parser as dparser
import math
import pygrib
import requests
from pydap.client import open_url
import numpy as np
import os
PATH = '/Volumes/My_Book_Pro/EHT/GRIB_Files/'
# Numerical and physical constants
BADVAL = -99999. # placeholder data that is missing or not defined on level
BADVAL_TEST = -99998.
G_STD = 9.80665 # standard gravitational acceleration in m / s^2
M_AIR = 28.964 # average dry air mass [g / mole]
M_O3 = 47.997 # O3 mass [g / mole]
H2O_SUPERCOOL_LIMIT = 238. # ice assumed below this temperature [K]
PASCAL_ON_MBAR = 100. # conversion from mbar (hPa) to Pa
R_Earth = 6371* (10**3) #meters
# Ignore H2O above the pressure level defined here. This is
# needed because the vertical grid used for RH skips the 20 mbar
# level. In any case, if the small amount of water vapor in
# the stratosphere (about 2 precipitable microns) needs to be
# modeled, the best way is with a climatological profile instead
# of GFS.
H2O_TOP_PLEVEL = 29. # Ignore H2O above this pressure level.
#
# Below are constants and format strings for constructing the data
# request URL. These include the base URL for the NOMADS CGI interface,
# and various strings for formatting the arguments given to it. Note
# that some information (e.g. grid, forecast production cycle) gets
# used more than once to construct the CGI request.
#
# GFS variables to be requested, and the format string for adding them
# to the CGI request URL. The variables are
# CLWMR - Cloud liquid water mass mixing ratio [kg liquid / kg air]
# HGT - Geopotential height [m]
# O3MR - Ozone mass mixing ratio [kg O3 / kg air]
# RH - Relative Humidity [%]
# TMP - Temperature [K]
# Comment string to be printed above model layers:
LAYER_HEADER = """
#
# Layer data below were derived from NCEP GFS model data obtained
# from the NOAA Operational Model Archive Distribution System
# (NOMADS). See http://nomads.ncep.noaa.gov for more information.
#
# Production date: {0}
# Cycle: {1:02d} UT
# Product: {2}
#
# Interpolated to
#
# latitude: {3} deg. N
# longitude: {4} deg. E
# Geopotential altitude: {5} m
#
"""
#
# Function for bilinear grid interpolation. a[i_lat][i_lon] is a
# 2x2 array of adjacent points on the lon,lat grid. u,v are the
# fractional distances in grid spacing in grid spacing units from
# the "bottom left" grid point to the interpolation point.
#
def grid_interp(a, u, v):
return ( a[0][0] * (1.0 - u) * (1.0 - v) + a[1][0] * u * (1.0 - v)
+ a[0][1] * (1.0 - u) * v + a[1][1] * u * v )
#
# Parse the command line and validate arguments.
#
parser = argparse.ArgumentParser()
parser.add_argument("lat", help="site latitude [deg], (-90 to 90)",
type=float)
parser.add_argument("lon", help="site longitude [deg], (-180 to 180)",
type=float)
parser.add_argument("altitude", help="site altitude [m]",
type=float)
parser.add_argument("gfsdate", help="GFS production date (YYYYMMDD)",
type=str)
parser.add_argument("gfscycle", help="GFS production cycle (0, 6, 12, 18)",
type=int)
parser.add_argument("gfsprod", help="GFS product: anl or f000 - f384 in multiples of 3",
type=str)
args = parser.parse_args()
if (args.lat < -90. or args.lat > 90.):
parser.error("invalid latitude")
if (args.lon < -360. or args.lon > 360.):
parser.error("invalid longitude")
if (args.lon < 0.):
args.lon = args.lon + 360.0
if (args.altitude < -500.):
parser.error("invalid altitude")
try:
gfsdatetime = dparser.parse(args.gfsdate)
except:
parser.error("bad GFS production date")
if (gfsdatetime < datetime.datetime(2004, 3, 2)):
parser.error("GFS production date too early")
if (args.gfscycle not in (0, 6, 12, 18)):
parser.error("invalid GFS production cycle")
if (args.gfsprod != "anl"):
if (args.gfsprod[0:1] == "f"):
forecast_hour = int(args.gfsprod[1:])
if (forecast_hour < 0 or forecast_hour > 384):
parser.error("invalid GFS product (hour out of range)")
else:
parser.error("invalid GFS product name")
if (args.gfsprod == "anl"):
URL = 'https://nomads.ncdc.noaa.gov/thredds/fileServer/gfs-004-anl'
URL += '/' + str(args.gfsdate[0:-2]) +'/' + str(args.gfsdate) + '/' + 'gfsanl_4_' + str(args.gfsdate) +'_'
if (args.gfscycle in (0,6)):
URL += '0' + str(args.gfscycle)+ '00_000.grb2'
if (args.gfscycle in (12, 18)):
URL += str(args.gfscycle)+ '00_000.grb2'
fname = URL[-31:]
if (args.gfsprod != "anl"):
if (gfsdatetime < datetime.datetime(2015, 8, 18)):
parser.error("GFS production date too early")
URL = 'https://nomads.ncdc.noaa.gov/thredds/fileServer/gfs-004'
URL += '/' + str(args.gfsdate[0:-2]) +'/' + str(args.gfsdate) + '/' + 'gfs_4_' + str(args.gfsdate) +'_'
if (args.gfscycle in (0,6)):
URL += '0' + str(args.gfscycle)+ '00_' + str(args.gfsprod[1:]) +'.grb2'
if (args.gfscycle in (12, 18)):
URL += str(args.gfscycle)+ '00_' + str(args.gfsprod[1:]) +'.grb2'
fname = URL[-28:]
if (os.path.isdir(str(PATH)+ '/' + str(args.gfsdate[0:-2])) == False):
os.system('mkdir ' + str(PATH) +'/'+ str(args.gfsdate[0:-2]))
if (os.path.isdir(str(PATH)+ '/' + str(args.gfsdate[0:-2])+ '/' + str(args.gfsdate)) == False):
os.system('mkdir ' + str(PATH) +'/' + str(args.gfsdate[0:-2]) + '/' + str(args.gfsdate))
if (os.path.isdir(str(PATH)+ '/' + str(args.gfsdate[0:-2])+ '/' + str(args.gfsdate) + '/' + str(args.gfsdate)+str(args.gfscycle)) == False):
os.system('mkdir ' + str(PATH)+ '/' + str(args.gfsdate[0:-2])+ '/' + str(args.gfsdate) + '/' + str(args.gfsdate)+str(args.gfscycle))
if (os.path.isdir(str(PATH)+ '/' + str(args.gfsdate[0:-2])+ '/' + str(args.gfsdate) + '/' + str(args.gfsdate)+str(args.gfscycle) + '/' + str(args.lat) + 'N' + str(args.lon) + 'E') == False):
os.system('mkdir ' + str(PATH)+ '/' + str(args.gfsdate[0:-2])+ '/' + str(args.gfsdate) + '/' + str(args.gfsdate)+str(args.gfscycle) + '/' + str(args.lat) + '_N_' + str(args.lon) + '_E')
'''
if os.path.isfile(str(PATH) + '/' + str(args.gfsdate[0:-2])+ '/' + str(args.gfsdate) + '/' + str(args.gfsprod) + '/'+ str(fname)) == False:
os.system('sudo wget ' + str(URL) + ' -P ' + str(PATH) + '/' + str(args.gfsdate[0:-2])+ '/' + str(args.gfsdate) + '/' + str(args.gfsprod) )
'''
################################################################################################################################################################
if os.path.isfile(str(PATH)+ '/' + str(args.gfsdate[0:-2])+ '/' + str(args.gfsdate) + '/' + str(args.gfsdate)+str(args.gfscycle)+ '/' + str(args.lat) + '_N_' + str(args.lon) + '_E' + '/' + str(args.gfsdate)+str(args.gfscycle)+ '_' + str(args.lat) + '_N_' + str(args.lon) + '_E_' + str(args.altitude)+ 'm_'+ str(args.gfsprod)+'_levels'+'.npy') == False:
grbs = pygrib.open(str(PATH) + '/' + str(args.gfsdate[0:-2])+ '/' + str(args.gfsdate) + '/' + str(args.gfsprod) + '/'+ str(fname))
LEVELS = []
geoh_data = []
tmp_data = []
o3m_data = []
relh_data = []
clm_data = []
for grb in grbs:
if grb.parameterName == 'Temperature' and (grb.level == 10 or grb.level == 20 or grb.level == 30 or grb.level == 50 or grb.level == 70 or grb.level == 100 or grb.level == 150 or grb.level == 200 or grb.level == 250 or grb.level == 300 or grb.level == 350 or grb.level == 400 or grb.level == 450 or grb.level == 500 or grb.level == 550 or grb.level == 600 or grb.level == 650 or grb.level == 700 or grb.level == 750 or grb.level == 800 or grb.level == 850 or grb.level == 900 or grb.level == 925 or grb.level == 950 or grb.level == 975 or grb.level == 1000):
if grb.level > 1000:
continue
if grb.level < 10:
continue
d = (grb.data(lat1 = (args.lat-0.5), lat2 = (args.lat+0.5), lon1 = (args.lon-0.5), lon2 = (args.lon+0.5)))
tmp_data.append(d[0])
LEVELS.append(grb.level)
if LEVELS[0] != 1000:
if grb.level == 1000:
break
elif grb.parameterName == 'Relative humidity'and (grb.level == 10 or grb.level == 20 or grb.level == 30 or grb.level == 50 or grb.level == 70 or grb.level == 100 or grb.level == 150 or grb.level == 200 or grb.level == 250 or grb.level == 300 or grb.level == 350 or grb.level == 400 or grb.level == 450 or grb.level == 500 or grb.level == 550 or grb.level == 600 or grb.level == 650 or grb.level == 700 or grb.level == 750 or grb.level == 800 or grb.level == 850 or grb.level == 900 or grb.level == 925 or grb.level == 950 or grb.level == 975 or grb.level == 1000):
if grb.level > 1000:
continue
if grb.level < 10:
continue
d = (grb.data(lat1 = (args.lat-0.5), lat2 = (args.lat+0.5), lon1 = (args.lon-0.5), lon2 = (args.lon+0.5)))
relh_data.append(d[0])
elif grb.parameterName == 'Geopotential height'and (grb.level == 10 or grb.level == 20 or grb.level == 30 or grb.level == 50 or grb.level == 70 or grb.level == 100 or grb.level == 150 or grb.level == 200 or grb.level == 250 or grb.level == 300 or grb.level == 350 or grb.level == 400 or grb.level == 450 or grb.level == 500 or grb.level == 550 or grb.level == 600 or grb.level == 650 or grb.level == 700 or grb.level == 750 or grb.level == 800 or grb.level == 850 or grb.level == 900 or grb.level == 925 or grb.level == 950 or grb.level == 975 or grb.level == 1000):
if grb.level > 1000:
continue
if grb.level < 10:
continue
d = (grb.data(lat1 = (args.lat-0.5), lat2 = (args.lat+0.5), lon1 = (args.lon-0.5), lon2 = (args.lon+0.5)))
geoh_data.append(d[0])
elif grb.name == "Ozone mixing ratio"and (grb.level == 10 or grb.level == 20 or grb.level == 30 or grb.level == 50 or grb.level == 70 or grb.level == 100 or grb.level == 150 or grb.level == 200 or grb.level == 250 or grb.level == 300 or grb.level == 350 or grb.level == 400 or grb.level == 450 or grb.level == 500 or grb.level == 550 or grb.level == 600 or grb.level == 650 or grb.level == 700 or grb.level == 750 or grb.level == 800 or grb.level == 850 or grb.level == 900 or grb.level == 925 or grb.level == 950 or grb.level == 975 or grb.level == 1000):
if grb.level > 1000:
continue
if grb.level < 10:
continue
d = (grb.data(lat1 = (args.lat-0.5), lat2 = (args.lat+0.5), lon1 = (args.lon-0.5), lon2 = (args.lon+0.5)))
o3m_data.append(d[0])
elif grb.parameterName == 'Cloud mixing ratio'and (grb.level == 10 or grb.level == 20 or grb.level == 30 or grb.level == 50 or grb.level == 70 or grb.level == 100 or grb.level == 150 or grb.level == 200 or grb.level == 250 or grb.level == 300 or grb.level == 350 or grb.level == 400 or grb.level == 450 or grb.level == 500 or grb.level == 550 or grb.level == 600 or grb.level == 650 or grb.level == 700 or grb.level == 750 or grb.level == 800 or grb.level == 850 or grb.level == 900 or grb.level == 925 or grb.level == 950 or grb.level == 975 or grb.level == 1000):
if grb.level > 1000:
continue
if grb.level < 10:
continue
d = (grb.data(lat1 = (args.lat-0.5), lat2 = (args.lat+0.5), lon1 = (args.lon-0.5), lon2 = (args.lon+0.5)))
clm_data.append(d[0])
tmp_data = np.array(tmp_data)
LEVELS = np.array(LEVELS)
geoh_data = np.array(geoh_data)
o3m_data = np.array(o3m_data)
relh_data = np.array(relh_data)
clm_data = np.array(clm_data)
np.save(str(PATH)+ '/' + str(args.gfsdate[0:-2])+ '/' + str(args.gfsdate) + '/' + str(args.gfsdate)+str(args.gfscycle)+ '/' + str(args.lat) + '_N_' + str(args.lon) + '_E' + '/' + str(args.gfsdate)+str(args.gfscycle)+ '_' + str(args.lat) + '_N_' + str(args.lon) + '_E_' + str(args.altitude)+ 'm_' + str(args.gfsprod)+ '_T'+'.npy',tmp_data)
np.save(str(PATH)+ '/' + str(args.gfsdate[0:-2])+ '/' + str(args.gfsdate) + '/' + str(args.gfsdate)+str(args.gfscycle)+ '/' + str(args.lat) + '_N_' + str(args.lon) + '_E' + '/' + str(args.gfsdate)+str(args.gfscycle)+ '_' + str(args.lat) + '_N_' + str(args.lon) + '_E_' + str(args.altitude)+ 'm_'+ str(args.gfsprod)+'_RH'+'.npy', relh_data)
np.save(str(PATH)+ '/' + str(args.gfsdate[0:-2])+ '/' + str(args.gfsdate) + '/' + str(args.gfsdate)+str(args.gfscycle)+ '/' + str(args.lat) + '_N_' + str(args.lon) + '_E' + '/' + str(args.gfsdate)+str(args.gfscycle)+ '_' + str(args.lat) + '_N_' + str(args.lon) + '_E_' + str(args.altitude)+ 'm_'+ str(args.gfsprod)+'_z'+'.npy', geoh_data)
np.save(str(PATH)+ '/' + str(args.gfsdate[0:-2])+ '/' + str(args.gfsdate) + '/' + str(args.gfsdate)+str(args.gfscycle)+ '/' + str(args.lat) + '_N_' + str(args.lon) + '_E' + '/' + str(args.gfsdate)+str(args.gfscycle)+ '_' + str(args.lat) + '_N_' + str(args.lon) + '_E_' + str(args.altitude)+ 'm_'+ str(args.gfsprod)+'_o3_vmr'+'.npy', o3m_data)
np.save(str(PATH)+ '/' + str(args.gfsdate[0:-2])+ '/' + str(args.gfsdate) + '/' + str(args.gfsdate)+str(args.gfscycle)+ '/' + str(args.lat) + '_N_' + str(args.lon) + '_E' + '/' + str(args.gfsdate)+str(args.gfscycle)+ '_' + str(args.lat) + '_N_' + str(args.lon) + '_E_' + str(args.altitude)+ 'm_'+ str(args.gfsprod)+'_cloud_mr'+'.npy', clm_data)
np.save(str(PATH)+ '/' + str(args.gfsdate[0:-2])+ '/' + str(args.gfsdate) + '/' + str(args.gfsdate)+str(args.gfscycle)+ '/' + str(args.lat) + '_N_' + str(args.lon) + '_E' + '/' + str(args.gfsdate)+str(args.gfscycle)+ '_' + str(args.lat) + '_N_' + str(args.lon) + '_E_' + str(args.altitude)+ 'm_'+ str(args.gfsprod)+'_levels'+'.npy', LEVELS)
tmp_data = np.load(str(PATH)+ '/' + str(args.gfsdate[0:-2])+ '/' + str(args.gfsdate) + '/' + str(args.gfsdate)+str(args.gfscycle)+ '/' + str(args.lat) + '_N_' + str(args.lon) + '_E' + '/' + str(args.gfsdate)+str(args.gfscycle)+ '_' + str(args.lat) + '_N_' + str(args.lon) + '_E_' + str(args.altitude)+ 'm_'+ str(args.gfsprod) + '_T'+'.npy')
relh_data = np.load(str(PATH)+ '/' + str(args.gfsdate[0:-2])+ '/' + str(args.gfsdate) + '/' + str(args.gfsdate)+str(args.gfscycle)+ '/' + str(args.lat) + '_N_' + str(args.lon) + '_E' + '/' + str(args.gfsdate)+str(args.gfscycle)+ '_' + str(args.lat) + '_N_' + str(args.lon) + '_E_' + str(args.altitude)+ 'm_'+ str(args.gfsprod)+'_RH'+'.npy')
geoh_data = np.load(str(PATH)+ '/' + str(args.gfsdate[0:-2])+ '/' + str(args.gfsdate) + '/' + str(args.gfsdate)+str(args.gfscycle)+ '/' + str(args.lat) + '_N_' + str(args.lon) + '_E' + '/' + str(args.gfsdate)+str(args.gfscycle)+ '_' + str(args.lat) + '_N_' + str(args.lon) + '_E_' + str(args.altitude)+ 'm_'+ str(args.gfsprod)+'_z'+'.npy')
o3m_data = np.load(str(PATH)+ '/' + str(args.gfsdate[0:-2])+ '/' + str(args.gfsdate) + '/' + str(args.gfsdate)+str(args.gfscycle)+ '/' + str(args.lat) + '_N_' + str(args.lon) + '_E' + '/' + str(args.gfsdate)+str(args.gfscycle)+ '_' + str(args.lat) + '_N_' + str(args.lon) + '_E_' + str(args.altitude)+ 'm_'+ str(args.gfsprod)+'_o3_vmr'+'.npy')
clm_data = np.load(str(PATH)+ '/' + str(args.gfsdate[0:-2])+ '/' + str(args.gfsdate) + '/' + str(args.gfsdate)+str(args.gfscycle)+ '/' + str(args.lat) + '_N_' + str(args.lon) + '_E' + '/' + str(args.gfsdate)+str(args.gfscycle)+ '_' + str(args.lat) + '_N_' + str(args.lon) + '_E_' + str(args.altitude)+ 'm_'+ str(args.gfsprod)+'_cloud_mr'+'.npy')
LEVELS = np.load(str(PATH)+ '/' + str(args.gfsdate[0:-2])+ '/' + str(args.gfsdate) + '/' + str(args.gfsdate)+str(args.gfscycle)+ '/' + str(args.lat) + '_N_' + str(args.lon) + '_E' + '/' + str(args.gfsdate)+str(args.gfscycle)+ '_' + str(args.lat) + '_N_' + str(args.lon) + '_E_' + str(args.altitude)+ 'm_'+ str(args.gfsprod)+'_levels'+'.npy')
Pbase = np.zeros(len(LEVELS))
z = np.zeros(len(LEVELS))
T = np.zeros(len(LEVELS))
o3_vmr = np.zeros(len(LEVELS))
RH = np.zeros(len(LEVELS))
cloud_mr = np.zeros(len(LEVELS))
if LEVELS[0] == 1000:
geoh_data = geoh_data[::-1]
tmp_data = tmp_data[::-1]
o3m_data = o3m_data[::-1]
relh_data = relh_data[::-1]
clm_data = clm_data[::-1]
LEVELS = LEVELS[::-1]
for i in np.arange(len(LEVELS)):
Pbase[i] = LEVELS[i]
T[i] = np.mean(tmp_data[i])
for i in np.arange(len(geoh_data)):
z[i] = np.mean(geoh_data[i])
for i in np.arange(len(o3m_data)):
o3_vmr[i] = np.mean(o3m_data[i])
for i in np.arange(len(relh_data)):
RH[i] = np.mean(relh_data[i])
for i in np.arange(len(clm_data)):
cloud_mr[i] = np.mean(clm_data[i])
#######################################################################################################################
# Print out the layer descriptions. On a layer, mixing ratios and
# RH are set to their averages over the two levels bounding the layer.
if (args.gfsprod == "anl"):
product_str = "analysis"
else:
product_str = args.gfsprod[1:] + " hour forecast"
print LAYER_HEADER.format(
args.gfsdate,
args.gfscycle,
product_str,
args.lat,
args.lon,
args.altitude)
for i in np.arange(len(LEVELS)):
if (z[i] > args.altitude):
print "layer"
print "Pbase {0:.1f} mbar # {1:.1f} m".format(Pbase[i], z[i])
print "Tbase {0:.1f} K".format(T[i])
print "column dry_air vmr"
if (i > 0):
o3_vmr_mid = 0.5 * ( o3_vmr[i-1] + o3_vmr[i])
RH_mid = 0.5 * ( RH[i-1] + RH[i])
cloud_mr_mid = 0.5 * (cloud_mr[i-1] + cloud_mr[i])
T_mid = 0.5 * ( T[i-1] + T[i])
else:
o3_vmr_mid = o3_vmr[i]
RH_mid = RH[i]
cloud_mr_mid = cloud_mr[i]
T_mid = T[i]
if (o3_vmr_mid > 0.0):
print "column o3 vmr {0:.3e}".format(o3_vmr_mid)
if (RH_mid > 0.0):
if (T_mid > H2O_SUPERCOOL_LIMIT):
print "column h2o RH {0:.2f}%".format(RH_mid)
else:
print "column h2o RHi {0:.2f}%".format(RH_mid)
if (cloud_mr_mid > 0.0):
# Convert cloud mixing ratio [kg / kg] to cloud total water
# across the layer [kg / m^2].
dP = PASCAL_ON_MBAR * (Pbase[i] - Pbase[i-1])
m = dP / G_STD
ctw = m * cloud_mr_mid
if ctw <= 0:
print ""
continue
if (T_mid > H2O_SUPERCOOL_LIMIT):
print "column lwp_abs_Rayleigh {0:.3e} kg*m^-2".format(ctw)
else:
print "column iwp_abs_Rayleigh {0:.3e} kg*m^-2".format(ctw)
print ""
# The base layer and base level of the model are special cases. First,
# we find the pressure and temperature of the base level by linearly
# interpolating (or extrapolating) log P and T in z.
if (i == 0):
print "User-specified altitude exceeds top GFS level"
exit()
if (z[i] == args.altitude): # exact coincidence with model level
exit()
u = (args.altitude - z[i-1]) / (z[i] - z[i-1])
logP_s = u * math.log(Pbase[i]) + (1.0 - u) * math.log(Pbase[i-1])
P_s = math.exp(logP_s)
T_s = u * T[i] + (1.0 - u) * T[i-1]
if P_s <= Pbase[i]:
exit()
# Other variables are interpolated or extrapolated linearly in P
# to the base level and clamped at zero.
u = (P_s - Pbase[i-1]) / (Pbase[i] - Pbase[i-1])
o3_vmr_s = u * o3_vmr[i] + (1.0 - u) * o3_vmr[i-1]
RH_s = u * RH[i] + (1.0 - u) * RH[i-1]
cloud_mr_s = u * cloud_mr[i] + (1.0 - u) * cloud_mr[i-1]
if (o3_vmr_s < 0.0):
o3_vmr_s = 0.0
if (RH_s < 0.0):
RH_s = 0.0
if (cloud_mr_s < 0.0):
cloud_mr_s = 0.0
o3_vmr_mid = 0.5 * ( o3_vmr[i-1] + o3_vmr_s)
RH_mid = 0.5 * ( RH[i-1] + RH_s)
cloud_mr_mid = 0.5 * (cloud_mr[i-1] + cloud_mr_s)
print "layer"
print "Pbase {0:.1f} mbar # {1:.1f} m".format(P_s, args.altitude)
print "Tbase {0:.1f} K".format(T_s)
print "column dry_air vmr"
if (o3_vmr_mid > 0.0):
print "column o3 vmr {0:.3e}".format(o3_vmr_mid)
if (RH_mid > 0.0):
if (T_mid > H2O_SUPERCOOL_LIMIT):
print "column h2o RH {0:.2f}%".format(RH_mid)
else:
print "column h2o RHi {0:.2f}%".format(RH_mid)
if (cloud_mr_mid > 0.0):
dP = PASCAL_ON_MBAR * (Pbase[i] - Pbase[i-1])
m = dP / G_STD
ctw = m * cloud_mr_mid
if (T_mid > H2O_SUPERCOOL_LIMIT):
print "column lwp_abs_Rayleigh {0:.3e} kg*m^-2".format(ctw)
else:
print "column iwp_abs_Rayleigh {0:.3e} kg*m^-2".format(ctw)
exit()