-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathexp_utils.py
296 lines (258 loc) · 10.9 KB
/
exp_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
from contextlib import nullcontext
from enum import StrEnum
import os
import csv
import copy
from typing import Any, Callable, Dict, Iterator, List, Set, ContextManager, Tuple, Type
import timm
import timm.optim
from transformers import AutoConfig, AutoModelForCausalLM, AutoModelForSeq2SeqLM, CLIPModel, GemmaForCausalLM, LlamaForCausalLM
from torchmultimodal.modules.losses.contrastive_loss_with_temperature import (
ContrastiveLossWithTemperature,
)
import torch
from torch import nn, optim
from torch.nn.attention import SDPBackend, sdpa_kernel
from torch.distributed._composable import checkpoint
from torch.utils._python_dispatch import TorchDispatchMode
import torch.utils._pytree as pytree
from torch.utils.flop_counter import flop_registry
class TestMode(TorchDispatchMode):
_float_types: Set[torch.dtype] = {
torch.float16,
torch.bfloat16,
torch.float32,
torch.float64,
}
def __torch_dispatch__(self, func, types, args=..., kwargs=None):
kwargs = kwargs if kwargs else {}
out = func(*args, **kwargs)
if func._overloadpacket in flop_registry:
flat_args_kwargs, args_spec = pytree.tree_flatten((args, kwargs))
flat_outs, out_spec = pytree.tree_flatten(out)
out_dtypes = {
t.dtype
for t in flat_outs
if isinstance(t, torch.Tensor) and t.dtype in TestMode._float_types
}
if torch.float32 in out_dtypes:
print(func.__name__)
print(out_dtypes)
print([arg.dtype for arg in flat_args_kwargs if isinstance(arg, torch.Tensor)])
print()
return out
DEVICE = "cuda:0"
BASE_DIR = "/n/holyscratch01/idreos_lab/Users/spurandare/mem-run-estimator"
OUT_DIR = f"{BASE_DIR}/outputs"
gpu_types: Set[str] = {"H100", "A100"}
runtime_est_modes: Set[str] = {"operator-level-cost-model", "operator-level-benchmark", "operator-level-learned-model"}
model_names: Set[str] = {
"hf_T5",
"hf_GPT2",
"timm_vit",
"hf_clip",
"llama_v3_1b",
"gemma_2b",
"timm_convnext_v2"
}
class ExpType(StrEnum):
runtime_est = "runtime_estimation"
memory_est = "memory_estimation"
real_execution = "real_execution"
test = "test"
class Precision(StrEnum):
FP = "FP"
MP = "MP"
HP = "HP"
model_cards: Dict[str, str] = {
"hf_T5": "t5-large",
"hf_GPT2": "gpt2-large",
"llama_v3_1b": "meta-llama/Llama-3.2-1B-Instruct",
"gemma_2b": "google/gemma-2b",
"timm_convnext_v2": "convnextv2_huge.fcmae_ft_in22k_in1k_512",
"timm_vit": "vit_huge_patch14_clip_224.laion2b_ft_in12k_in1k",
"hf_clip": "openai/clip-vit-large-patch14-336",
}
precision_to_dtype: Dict[Precision, torch.dtype] = {
Precision.FP : torch.float32,
Precision.HP: torch.float16,
Precision.MP: torch.float32
}
model_class: Dict[str, Type] = {
"hf_T5": AutoModelForSeq2SeqLM,
"hf_GPT2": AutoModelForCausalLM,
"llama_v3_1b": AutoModelForCausalLM,
"gemma_2b": AutoModelForCausalLM,
"hf_clip": CLIPModel,
}
model_ac_classes: Dict[str, List[str]] = {
"hf_T5": ["T5LayerFF", "T5LayerNorm"],
"hf_GPT2": ["GPT2Block",],
"llama_v3_1b": ["LlamaMLP","LlamaRMSNorm"],
"gemma_2b": ["GemmaMLP", "GemmaRMSNorm"],
"timm_convnext_v2": ["GlobalResponseNormMlp",],
"timm_vit": ["Block",],
"hf_clip": ["CLIPEncoderLayer",],
}
def generate_inputs_and_labels(
bsz: int, vocab_size: int, seq_len: int, dev: torch.device
) -> Tuple[torch.Tensor, torch.Tensor]:
input_ids = torch.randint(0, vocab_size, (bsz, seq_len), dtype=torch.int64, device=dev)
labels = torch.randint(0, vocab_size, (bsz, seq_len), dtype=torch.int64, device=dev)
return (input_ids, labels)
def generate_inputs_and_targets(
bsz: int, im_sz:int, n_classes: int, dtype: torch.dtype, dev: torch.device
) -> Tuple[torch.Tensor, torch.Tensor]:
input = torch.randn((bsz, 3, im_sz, im_sz), dtype=dtype, device=dev)
target = torch.randint(0, n_classes, (bsz, ), dtype=torch.int64, device=dev)
return(input, target)
def generate_multimodal_inputs(
bsz: int, vocab_size: int, seq_len: int, im_sz:int, dtype: torch.dtype, dev: torch.device
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
input_img = torch.randn((bsz, 3, im_sz, im_sz), dtype=dtype, device=dev)
input_ids = torch.randint(0, vocab_size, (bsz, seq_len), dtype=torch.int64, device=dev)
attention_mask = torch.ones((bsz, seq_len), dtype=torch.int64, device=dev)
return (input_img, input_ids, attention_mask)
def create_optimizer(param_iter: Iterator) -> optim.Optimizer:
optimizer = optim.Adam(
param_iter,
lr=1e-4,
weight_decay=1.0e-4,
eps=1.0e-6,
)
return optimizer
def apply_ac(model: nn.Module, ac_classes: List[str]):
for module in model.modules():
module_class = module.__class__.__name__
if module_class in ac_classes:
checkpoint(module, preserve_rng_state=False)
def create_training_setup(
model_name: str,
batch_size: int = 2,
seq_len: int = 128,
precision: Precision = Precision.HP,
ac: bool = False,
image_size: int = 224,
dev: torch.device = torch.device(DEVICE),
init_mode: ContextManager = nullcontext(),
) -> Tuple[nn.Module, optim.Optimizer, Callable]:
dtype = precision_to_dtype[precision]
amp_context = nullcontext()
if precision == Precision.MP:
amp_context = torch.autocast(device_type=DEVICE)
if model_name in [
"hf_T5", "hf_GPT2", "llama_v3_1b", "gemma_2b"
]:
model_card = model_cards[model_name]
model_cls = model_class[model_name]
config = AutoConfig.from_pretrained(model_card)
with init_mode:
with torch.device(dev):
model = model_cls.from_config(config=config).to(dtype=dtype)
optimizer = create_optimizer(model.parameters())
if ac:
ac_classes = model_ac_classes[model_name]
apply_ac(model, ac_classes)
def hf_train_step(
model: nn.Module, optim: optim.Optimizer,
):
input_ids, labels = generate_inputs_and_labels(batch_size, config.vocab_size, seq_len, dev)
inputs = {"input_ids": input_ids, "labels": labels}
with sdpa_kernel([SDPBackend.FLASH_ATTENTION, SDPBackend.CUDNN_ATTENTION, SDPBackend.EFFICIENT_ATTENTION]):
with amp_context:
loss = model(**inputs).loss
loss.backward()
optim.step()
optim.zero_grad()
return (model, optimizer, hf_train_step)
elif model_name in ["timm_vit", "timm_convnext_v2"]:
model_card = model_cards[model_name]
with init_mode:
with torch.device(dev):
model = timm.create_model(model_card, pretrained=False).to(dtype=dtype)
optimizer = timm.optim.create_optimizer_v2(model, opt="adam")
loss_fn = nn.functional.cross_entropy
if ac:
ac_classes = model_ac_classes[model_name]
apply_ac(model, ac_classes)
def timm_train_step(
model: nn.Module, optim: optim.Optimizer,
):
n_classes = model.default_cfg['num_classes']
inputs = generate_inputs_and_targets(batch_size, image_size, n_classes, dtype, dev)
inp, target = inputs
with sdpa_kernel([SDPBackend.FLASH_ATTENTION, SDPBackend.CUDNN_ATTENTION, SDPBackend.EFFICIENT_ATTENTION]):
with amp_context:
output = model(inp)
loss = loss_fn(output, target)
loss.backward()
optim.step()
optim.zero_grad()
return (model, optimizer, timm_train_step)
elif model_name == "hf_clip":
model_card = model_cards[model_name]
model_cls = model_class[model_name]
config = AutoConfig.from_pretrained(model_card)
with init_mode:
with torch.device(dev):
model = model_cls._from_config(config=config).to(dtype=dtype)
loss_fn = ContrastiveLossWithTemperature()
class CLIP(nn.Module):
def __init__(self, clip_model, loss_mod):
super().__init__()
self.add_module('clip_model', clip_model)
self.add_module('contrastive_loss_with_temp', loss_mod)
def forward(self, **kwargs):
outputs = self.clip_model(**kwargs)
loss = self.contrastive_loss_with_temp(outputs.image_embeds, outputs.text_embeds)
return loss
model_with_loss = CLIP(model, loss_fn)
if ac:
ac_classes = model_ac_classes[model_name]
apply_ac(model_with_loss, ac_classes)
optimizer = create_optimizer(model_with_loss.parameters())
def clip_train_step(
model: nn.Module, optim: optim.Optimizer,
):
img, ids, attn_mask = generate_multimodal_inputs(
batch_size,
model.clip_model.config.text_config.vocab_size,
model.clip_model.config.text_config.max_length,
image_size,
dtype,
dev
)
inputs = {'input_ids': ids, 'attention_mask': attn_mask, 'pixel_values': img}
with sdpa_kernel([SDPBackend.FLASH_ATTENTION, SDPBackend.CUDNN_ATTENTION, SDPBackend.EFFICIENT_ATTENTION]):
with amp_context:
loss = model(**inputs)
loss.backward()
optim.step()
optim.zero_grad()
return (model_with_loss, optimizer, clip_train_step)
else:
raise ValueError(f"No setup is available for {model_name}. Please choose from {model_names}")
def write_to_logfile(file_name: str, log_record: str):
# Create a lock file
lock_file = file_name + ".lock"
if os.path.exists(lock_file):
# If the lock file exists, wait for it to be released
while os.path.exists(lock_file):
pass
else:
# Create the lock file and write to the file
with open(lock_file, "w") as f:
f.write("locked")
with open(file_name, 'a', newline='') as csvfile:
writer = csv.writer(csvfile)
writer.writerow(log_record)
# Release the lock file
os.remove(lock_file)
def override_args_with_configs(args, config: Dict[str, Any]):
b_args = copy.deepcopy(args)
b_args.batch_size = config["batch_size"]
b_args.seq_len = config["seq_len"]
b_args.precision = config["precision"].value
b_args.enable_ac = config["ac"]
b_args.image_size = config["image_size"]
return b_args