forked from tensorflow/tfjs
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathwebgl_custom_op_test.ts
110 lines (98 loc) · 3.79 KB
/
webgl_custom_op_test.ts
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
/**
* @license
* Copyright 2018 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
import * as tf from '@tensorflow/tfjs-core';
import {engine, Tensor, TensorInfo, test_util} from '@tensorflow/tfjs-core';
// tslint:disable-next-line: no-imports-from-dist
import {describeWithFlags} from '@tensorflow/tfjs-core/dist/jasmine_util';
import {WEBGL_ENVS} from './backend_webgl_test_registry';
import {GPGPUProgram, MathBackendWebGL} from './webgl';
describeWithFlags('custom-op webgl', WEBGL_ENVS, () => {
class SquareAndAddKernel implements GPGPUProgram {
variableNames = ['X'];
outputShape: number[];
userCode: string;
constructor(inputShape: number[]) {
this.outputShape = inputShape.slice();
this.userCode = `
void main() {
float x = getXAtOutCoords();
float value = x * x + x;
setOutput(value);
}
`;
}
}
class SquareAndAddBackpropKernel implements GPGPUProgram {
variableNames = ['X'];
outputShape: number[];
userCode: string;
constructor(inputShape: number[]) {
this.outputShape = inputShape.slice();
this.userCode = `
void main() {
float x = getXAtOutCoords();
float value = 2.0 * x + 1.0;
setOutput(value);
}
`;
}
}
function squareAndAdd<T extends tf.Tensor>(x: T): T {
const fn = tf.customGrad((x: T, save: tf.GradSaveFunc) => {
save([x]);
const webglBackend = tf.backend() as MathBackendWebGL;
const program = new SquareAndAddKernel(x.shape);
const backpropProgram = new SquareAndAddBackpropKernel(x.shape);
const outInfo: TensorInfo = webglBackend.compileAndRun(program, [x]);
const value = engine().makeTensorFromTensorInfo(outInfo) as T;
const gradFunc = (dy: T, saved: Tensor[]) => {
const [x] = saved;
const backInfo = webglBackend.compileAndRun(backpropProgram, [x]);
const back: T = engine().makeTensorFromTensorInfo(backInfo) as T;
return back.mul(dy);
};
return {value, gradFunc};
});
return fn(x);
}
it('lets users use custom operations', async () => {
const inputArr = [1, 2, 3, 4];
const input = tf.tensor(inputArr);
const output = squareAndAdd(input);
test_util.expectArraysClose(
await output.data(), inputArr.map(x => x * x + x));
});
it('lets users define gradients for operations', async () => {
const inputArr = [1, 2, 3, 4];
const input = tf.tensor(inputArr);
const grads = tf.valueAndGrad(x => squareAndAdd(x));
const {value, grad} = grads(input);
test_util.expectArraysClose(
await value.data(), inputArr.map(x => x * x + x));
test_util.expectArraysClose(
await grad.data(), inputArr.map(x => 2 * x + 1));
});
it('multiplies by dy parameter when it is passed', async () => {
const inputArr = [1, 2, 3, 4];
const input = tf.tensor(inputArr);
const grads = tf.valueAndGrad(x => squareAndAdd(x));
const {value, grad} = grads(input, tf.zerosLike(input));
test_util.expectArraysClose(
await value.data(), inputArr.map(x => x * x + x));
test_util.expectArraysClose(await grad.data(), inputArr.map(() => 0.0));
});
});