forked from tensorflow/tfjs
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathunaryop_gpu.ts
67 lines (54 loc) · 1.84 KB
/
unaryop_gpu.ts
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
/**
* @license
* Copyright 2017 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
import {GPGPUProgram, useShapeUniforms} from './gpgpu_math';
export class UnaryOpProgram implements GPGPUProgram {
variableNames = ['A'];
userCode: string;
outputShape: number[];
enableShapeUniforms: boolean;
constructor(aShape: number[], opSnippet: string) {
this.outputShape = aShape;
this.enableShapeUniforms = useShapeUniforms(this.outputShape.length);
this.userCode = `
float unaryOperation(float x) {
${opSnippet}
}
void main() {
float x = getAAtOutCoords();
float y = unaryOperation(x);
setOutput(y);
}
`;
}
}
export const CHECK_NAN_SNIPPET = `if (isnan(x)) return x;`;
export const LINEAR = `return x;`;
export const ABS = `return abs(x);`;
export function STEP(alpha = 0.0) {
return CHECK_NAN_SNIPPET + `
return x > 0.0 ? 1.0 : float(${alpha});
`;
}
export const ELU = `return (x >= 0.0) ? x : (exp(x) - 1.0);`;
export const RELU = CHECK_NAN_SNIPPET + `
return (x < 0.0) ? 0.0 : x;
`;
export const RELU6 = CHECK_NAN_SNIPPET + `
return (x < 0.0) ? 0.0 : min(6.0, x);
`;
export const CLONE = 'return x;';
export const SIGMOID = `return 1.0 / (1.0 + exp(-1.0 * x));`;