forked from tensorflow/tfjs
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathreshape_packed_test.ts
100 lines (91 loc) · 3.69 KB
/
reshape_packed_test.ts
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
/**
* @license
* Copyright 2018 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
import * as tf from '@tensorflow/tfjs-core';
import {test_util} from '@tensorflow/tfjs-core';
const {expectArraysClose} = test_util;
// tslint:disable-next-line: no-imports-from-dist
import {describeWithFlags} from '@tensorflow/tfjs-core/dist/jasmine_util';
import {PACKED_ENVS} from './backend_webgl_test_registry';
describeWithFlags('expensive reshape', PACKED_ENVS, () => {
const cValues =
[46, 52, 58, 64, 70, 100, 115, 130, 145, 160, 154, 178, 202, 226, 250];
let c: tf.Tensor;
beforeEach(() => {
const a = tf.tensor2d([1, 2, 3, 4, 5, 6, 7, 8, 9], [3, 3]);
const b = tf.tensor2d(
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15], [3, 5]);
c = tf.matMul(a, b);
});
it('6d --> 1d', async () => {
const cAs6D = tf.reshape(c, [1, 1, 1, 3, 1, 5]);
const cAs1D = tf.reshape(cAs6D, [-1, cValues.length]);
expectArraysClose(await cAs1D.data(), cValues);
});
it('1d --> 2d', async () => {
const cAs1D = tf.reshape(c, [cValues.length]);
const cAs2D = tf.reshape(cAs1D, [5, -1]);
expectArraysClose(await cAs2D.data(), cValues);
});
it('2d --> 3d', async () => {
const cAs3D = tf.reshape(c, [3, 1, 5]);
expectArraysClose(await cAs3D.data(), cValues);
});
it('3d --> 4d', async () => {
const cAs3D = tf.reshape(c, [3, 1, 5]);
const cAs4D = tf.reshape(cAs3D, [3, 5, 1, 1]);
expectArraysClose(await cAs4D.data(), cValues);
});
it('4d --> 5d', async () => {
const cAs4D = tf.reshape(c, [3, 5, 1, 1]);
const cAs5D = tf.reshape(cAs4D, [1, 1, 1, 5, 3]);
expectArraysClose(await cAs5D.data(), cValues);
});
it('5d --> 6d', async () => {
const cAs5D = tf.reshape(c, [1, 1, 1, 5, 3]);
const cAs6D = tf.reshape(cAs5D, [3, 5, 1, 1, 1, 1]);
expectArraysClose(await cAs6D.data(), cValues);
});
});
describeWithFlags('expensive reshape with even columns', PACKED_ENVS, () => {
it('2 --> 4 columns', async () => {
const maxTextureSize = tf.env().getNumber('WEBGL_MAX_TEXTURE_SIZE');
let values: number[] = new Array<number>(16).fill(0);
values = values.map((d, i) => i + 1);
const a = tf.tensor2d(values, [8, 2]);
const b = tf.tensor2d([1, 2, 3, 4], [2, 2]);
tf.env().set('WEBGL_MAX_TEXTURE_SIZE', 2);
// Setting WEBGL_MAX_TEXTURE_SIZE to 2 makes that [8, 2] tensor is packed
// to texture of width 2 by height 2. Indices are packed as:
// -------------
// | 0 1 | 4 5 | // First row's four
// | 2 3 | 6 7 | // pixels.
// -------------
// ...
const c = tf.matMul(a, b);
let cAs4D = c.reshape([2, 1, 2, 4]);
tf.env().set('WEBGL_MAX_TEXTURE_SIZE', maxTextureSize);
// Execute non-packed operations to unpack tensor.
const webglPackFlagSaved = tf.env().getBool('WEBGL_PACK');
tf.env().set('WEBGL_PACK', false);
cAs4D = cAs4D.add(1);
cAs4D = cAs4D.add(-1);
tf.env().set('WEBGL_PACK', webglPackFlagSaved);
const result =
[7, 10, 15, 22, 23, 34, 31, 46, 39, 58, 47, 70, 55, 82, 63, 94];
expectArraysClose(await cAs4D.data(), result);
});
});