forked from tensorflow/tfjs
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmultinomial_gpu.ts
52 lines (44 loc) · 1.58 KB
/
multinomial_gpu.ts
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
/**
* @license
* Copyright 2017 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
import {GPGPUProgram} from './gpgpu_math';
import {UniformType} from './shader_compiler';
export class MultinomialProgram implements GPGPUProgram {
variableNames = ['probs'];
outputShape: number[];
userCode: string;
customUniforms = [{name: 'seed', type: 'float' as UniformType}];
constructor(batchSize: number, numOutcomes: number, numSamples: number) {
this.outputShape = [batchSize, numSamples];
this.userCode = `
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
float r = random(seed);
float cdf = 0.0;
for (int i = 0; i < ${numOutcomes - 1}; i++) {
cdf += getProbs(batch, i);
if (r < cdf) {
setOutput(float(i));
return;
}
}
// If no other event happened, last event happened.
setOutput(float(${numOutcomes - 1}));
}
`;
}
}