forked from tensorflow/tfjs
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconv_gpu_depthwise.ts
124 lines (107 loc) · 3.84 KB
/
conv_gpu_depthwise.ts
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
/**
* @license
* Copyright 2017 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
import {backend_util} from '@tensorflow/tfjs-core';
import {GPGPUProgram, useShapeUniforms} from './gpgpu_math';
export class DepthwiseConv2DProgram implements GPGPUProgram {
variableNames = ['x', 'W'];
outputShape: number[];
userCode: string;
enableShapeUniforms: boolean;
customUniforms = [
{name: 'pads', type: 'ivec2' as const },
{name: 'strides', type: 'ivec2' as const },
{name: 'dilations', type: 'ivec2' as const },
{name: 'inDims', type: 'ivec2' as const },
];
constructor(
convInfo: backend_util.Conv2DInfo, addBias = false,
activation: string = null, hasPreluActivation = false,
hasLeakyReluAlpha = false) {
this.outputShape = convInfo.outShape;
this.enableShapeUniforms = useShapeUniforms(this.outputShape.length);
const filterHeight = convInfo.filterHeight;
const filterWidth = convInfo.filterWidth;
const channelMul = convInfo.outChannels / convInfo.inChannels;
let activationSnippet = '', applyActivationSnippet = '';
if (activation) {
if (hasPreluActivation) {
activationSnippet = `float activation(float a) {
float b = getPreluActivationWeightsAtOutCoords();
${activation}
}`;
} else if (hasLeakyReluAlpha) {
activationSnippet = `float activation(float a) {
float b = getLeakyreluAlphaAtOutCoords();
${activation}
}`;
} else {
activationSnippet = `
float activation(float x) {
${activation}
}
`;
}
applyActivationSnippet = `result = activation(result);`;
}
const addBiasSnippet = addBias ? 'result += getBiasAtOutCoords();' : '';
if (addBias) {
this.variableNames.push('bias');
}
if (hasPreluActivation) {
this.variableNames.push('preluActivationWeights');
}
if (hasLeakyReluAlpha) {
this.variableNames.push('leakyreluAlpha');
}
this.userCode = `
${activationSnippet}
void main() {
ivec4 coords = getOutputCoords();
int batch = coords.x;
ivec2 xRCCorner = coords.yz * strides - pads;
int d2 = coords.w;
int d1 = d2 / ${channelMul};
int q = d2 - d1 * ${channelMul};
int xRCorner = xRCCorner.x;
int xCCorner = xRCCorner.y;
// Convolve x(?, ?, d1) with w(:, :, d1, q) to get y(yR, yC, d2).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
// TO DO(dsmilkov): Flatten the two for loops and vec4 the operations.
for (int wR = 0; wR < ${filterHeight}; wR++) {
int xR = xRCorner + wR * dilations[0];
if (xR < 0 || xR >= inDims[0]) {
continue;
}
for (int wC = 0; wC < ${filterWidth}; wC++) {
int xC = xCCorner + wC * dilations[1];
if (xC < 0 || xC >= inDims[1]) {
continue;
}
float xVal = getX(batch, xR, xC, d1);
float wVal = getW(wR, wC, d1, q);
dotProd += xVal * wVal;
}
}
float result = dotProd;
${addBiasSnippet}
${applyActivationSnippet}
setOutput(result);
}
`;
}
}