forked from CharlesShang/DCNv2
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtestcpu.py
270 lines (225 loc) · 8.04 KB
/
testcpu.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
#!/usr/bin/env python
from __future__ import absolute_import
from __future__ import print_function
from __future__ import division
import time
import torch
import torch.nn as nn
from torch.autograd import gradcheck
from dcn_v2 import dcn_v2_conv, DCNv2, DCN
from dcn_v2 import dcn_v2_pooling, DCNv2Pooling, DCNPooling
deformable_groups = 1
N, inC, inH, inW = 2, 2, 4, 4
outC = 2
kH, kW = 3, 3
def conv_identify(weight, bias):
weight.data.zero_()
bias.data.zero_()
o, i, h, w = weight.shape
y = h//2
x = w//2
for p in range(i):
for q in range(o):
if p == q:
weight.data[q, p, y, x] = 1.0
def check_zero_offset():
conv_offset = nn.Conv2d(inC, deformable_groups * 2 * kH * kW,
kernel_size=(kH, kW),
stride=(1, 1),
padding=(1, 1),
bias=True)
conv_mask = nn.Conv2d(inC, deformable_groups * 1 * kH * kW,
kernel_size=(kH, kW),
stride=(1, 1),
padding=(1, 1),
bias=True)
dcn_v2 = DCNv2(inC, outC, (kH, kW),
stride=1, padding=1, dilation=1,
deformable_groups=deformable_groups)
conv_offset.weight.data.zero_()
conv_offset.bias.data.zero_()
conv_mask.weight.data.zero_()
conv_mask.bias.data.zero_()
conv_identify(dcn_v2.weight, dcn_v2.bias)
input = torch.randn(N, inC, inH, inW)
offset = conv_offset(input)
mask = conv_mask(input)
mask = torch.sigmoid(mask)
output = dcn_v2(input, offset, mask)
output *= 2
d = (input - output).abs().max()
if d < 1e-10:
print('Zero offset passed')
else:
print('Zero offset failed')
print(input)
print(output)
def check_gradient_dconv():
input = torch.rand(N, inC, inH, inW) * 0.01
input.requires_grad = True
offset = torch.randn(N, deformable_groups * 2 * kW * kH, inH, inW) * 2
# offset.data.zero_()
# offset.data -= 0.5
offset.requires_grad = True
mask = torch.rand(N, deformable_groups * 1 * kW * kH, inH, inW)
# mask.data.zero_()
mask.requires_grad = True
mask = torch.sigmoid(mask)
weight = torch.randn(outC, inC, kH, kW)
weight.requires_grad = True
bias = torch.rand(outC)
bias.requires_grad = True
stride = 1
padding = 1
dilation = 1
print('check_gradient_dconv: ',
gradcheck(dcn_v2_conv, (input, offset, mask, weight, bias,
stride, padding, dilation, deformable_groups),
eps=1e-3, atol=1e-4, rtol=1e-2))
def check_pooling_zero_offset():
input = torch.randn(2, 16, 64, 64).zero_()
input[0, :, 16:26, 16:26] = 1.
input[1, :, 10:20, 20:30] = 2.
rois = torch.tensor([
[0, 65, 65, 103, 103],
[1, 81, 41, 119, 79],
]).float()
pooling = DCNv2Pooling(spatial_scale=1.0 / 4,
pooled_size=7,
output_dim=16,
no_trans=True,
group_size=1,
trans_std=0.0)
out = pooling(input, rois, input.new())
s = ', '.join(['%f' % out[i, :, :, :].mean().item()
for i in range(rois.shape[0])])
print(s)
dpooling = DCNv2Pooling(spatial_scale=1.0 / 4,
pooled_size=7,
output_dim=16,
no_trans=False,
group_size=1,
trans_std=0.0)
offset = torch.randn(20, 2, 7, 7).zero_()
dout = dpooling(input, rois, offset)
s = ', '.join(['%f' % dout[i, :, :, :].mean().item()
for i in range(rois.shape[0])])
print(s)
def check_gradient_dpooling():
input = torch.randn(2, 3, 5, 5) * 0.01
N = 4
batch_inds = torch.randint(2, (N, 1)).float()
x = torch.rand((N, 1)).float() * 15
y = torch.rand((N, 1)).float() * 15
w = torch.rand((N, 1)).float() * 10
h = torch.rand((N, 1)).float() * 10
rois = torch.cat((batch_inds, x, y, x + w, y + h), dim=1)
offset = torch.randn(N, 2, 3, 3)
input.requires_grad = True
offset.requires_grad = True
spatial_scale = 1.0 / 4
pooled_size = 3
output_dim = 3
no_trans = 0
group_size = 1
trans_std = 0.0
sample_per_part = 4
part_size = pooled_size
print('check_gradient_dpooling:',
gradcheck(dcn_v2_pooling, (input, rois, offset,
spatial_scale,
pooled_size,
output_dim,
no_trans,
group_size,
part_size,
sample_per_part,
trans_std),
eps=1e-4))
def example_dconv():
input = torch.randn(2, 64, 128, 128)
# wrap all things (offset and mask) in DCN
dcn = DCN(64, 64, kernel_size=(3, 3), stride=1,
padding=1, deformable_groups=2)
# print(dcn.weight.shape, input.shape)
output = dcn(input)
targert = output.new(*output.size())
targert.data.uniform_(-0.01, 0.01)
error = (targert - output).mean()
error.backward()
print(output.shape)
def example_dpooling():
input = torch.randn(2, 32, 64, 64)
batch_inds = torch.randint(2, (20, 1)).float()
x = torch.randint(256, (20, 1)).float()
y = torch.randint(256, (20, 1)).float()
w = torch.randint(64, (20, 1)).float()
h = torch.randint(64, (20, 1)).float()
rois = torch.cat((batch_inds, x, y, x + w, y + h), dim=1)
offset = torch.randn(20, 2, 7, 7)
input.requires_grad = True
offset.requires_grad = True
# normal roi_align
pooling = DCNv2Pooling(spatial_scale=1.0 / 4,
pooled_size=7,
output_dim=32,
no_trans=True,
group_size=1,
trans_std=0.1)
# deformable pooling
dpooling = DCNv2Pooling(spatial_scale=1.0 / 4,
pooled_size=7,
output_dim=32,
no_trans=False,
group_size=1,
trans_std=0.1)
out = pooling(input, rois, offset)
dout = dpooling(input, rois, offset)
print(out.shape)
print(dout.shape)
target_out = out.new(*out.size())
target_out.data.uniform_(-0.01, 0.01)
target_dout = dout.new(*dout.size())
target_dout.data.uniform_(-0.01, 0.01)
e = (target_out - out).mean()
e.backward()
e = (target_dout - dout).mean()
e.backward()
def example_mdpooling():
input = torch.randn(2, 32, 64, 64)
input.requires_grad = True
batch_inds = torch.randint(2, (20, 1)).float()
x = torch.randint(256, (20, 1)).float()
y = torch.randint(256, (20, 1)).float()
w = torch.randint(64, (20, 1)).float()
h = torch.randint(64, (20, 1)).float()
rois = torch.cat((batch_inds, x, y, x + w, y + h), dim=1)
# mdformable pooling (V2)
dpooling = DCNPooling(spatial_scale=1.0 / 4,
pooled_size=7,
output_dim=32,
no_trans=False,
group_size=1,
trans_std=0.1,
deform_fc_dim=1024)
dout = dpooling(input, rois)
target = dout.new(*dout.size())
target.data.uniform_(-0.1, 0.1)
error = (target - dout).mean()
error.backward()
print(dout.shape)
if __name__ == '__main__':
example_dconv()
example_dpooling()
example_mdpooling()
check_pooling_zero_offset()
# zero offset check
if inC == outC:
check_zero_offset()
check_gradient_dpooling()
check_gradient_dconv()
# """
# ****** Note: backward is not reentrant error may not be a serious problem,
# ****** since the max error is less than 1e-7,
# ****** Still looking for what trigger this problem
# """