-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy pathgenerate_result.py
125 lines (101 loc) · 4.36 KB
/
generate_result.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
import sys
import os
import numpy as np
import cv2
import torch
from model import VideoSaliencyModel
from scipy.ndimage.filters import gaussian_filter
from loss import kldiv, cc, nss
import argparse
from torch.utils.data import DataLoader
from dataloader import DHF1KDataset
from utils import *
import time
from tqdm import tqdm
from torchvision import transforms, utils
from os.path import join
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
print(device)
def validate(args):
path_indata = args.path_indata
file_weight = args.file_weight
len_temporal = args.clip_size
model = VideoSaliencyModel(
transformer_in_channel=args.transformer_in_channel,
nhead=args.nhead,
use_upsample=bool(args.decoder_upsample),
num_hier=args.num_hier,
num_clips=args.clip_size
)
model.load_state_dict(torch.load(file_weight))
model = model.to(device)
torch.backends.cudnn.benchmark = False
model.eval()
list_indata = [d for d in os.listdir(path_indata) if os.path.isdir(os.path.join(path_indata, d))]
list_indata.sort()
if args.start_idx!=-1:
_len = (1.0/float(args.num_parts))*len(list_indata)
list_indata = list_indata[int((args.start_idx-1)*_len): int(args.start_idx*_len)]
for dname in list_indata:
print ('processing ' + dname, flush=True)
list_frames = [f for f in os.listdir(os.path.join(path_indata, dname, 'images')) if os.path.isfile(os.path.join(path_indata, dname, 'images', f))]
list_frames.sort()
os.makedirs(join(args.save_path, dname), exist_ok=True)
# process in a sliding window fashion
if len(list_frames) >= 2*len_temporal-1:
snippet = []
for i in range(len(list_frames)):
torch_img, img_size = torch_transform(os.path.join(path_indata, dname, 'images', list_frames[i]))
snippet.append(torch_img)
if i >= len_temporal-1:
clip = torch.FloatTensor(torch.stack(snippet, dim=0)).unsqueeze(0)
clip = clip.permute((0,2,1,3,4))
process(model, clip, path_indata, dname, list_frames[i], args, img_size)
# process first (len_temporal-1) frames
if i < 2*len_temporal-2:
process(model, torch.flip(clip, [2]), path_indata, dname, list_frames[i-len_temporal+1], args, img_size)
del snippet[0]
else:
print (' more frames are needed')
def torch_transform(path):
img_transform = transforms.Compose([
transforms.Resize((224, 384)),
transforms.ToTensor(),
transforms.Normalize(
[0.485, 0.456, 0.406],
[0.229, 0.224, 0.225]
)
])
img = Image.open(path).convert('RGB')
sz = img.size
img = img_transform(img)
return img, sz
def blur(img):
k_size = 11
bl = cv2.GaussianBlur(img,(k_size,k_size),0)
return torch.FloatTensor(bl)
def process(model, clip, path_inpdata, dname, frame_no, args, img_size):
with torch.no_grad():
smap = model(clip.to(device)).cpu().data[0]
smap = smap.numpy()
smap = cv2.resize(smap, (img_size[0], img_size[1]))
smap = blur(smap)
img_save(smap, join(args.save_path, dname, frame_no), normalize=True)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--file_weight',default="./saved_models/ViNet_DHF1K.pt", type=str)
parser.add_argument('--nhead',default=4, type=int)
parser.add_argument('--num_encoder_layers',default=3, type=int)
parser.add_argument('--transformer_in_channel',default=32, type=int)
parser.add_argument('--save_path',default='/ssd_scratch/cvit/samyak/Results/theatre_hollywood', type=str)
parser.add_argument('--start_idx',default=-1, type=int)
parser.add_argument('--num_parts',default=4, type=int)
parser.add_argument('--path_indata',default='/ssd_scratch/cvit/samyak/DHF1K/val', type=str)
parser.add_argument('--multi_frame',default=0, type=int)
parser.add_argument('--decoder_upsample',default=1, type=int)
parser.add_argument('--num_decoder_layers',default=-1, type=int)
parser.add_argument('--num_hier',default=3, type=int)
parser.add_argument('--clip_size',default=32, type=int)
args = parser.parse_args()
print(args)
validate(args)