-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathoral.tex
1746 lines (1571 loc) · 56.6 KB
/
oral.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\documentclass[mathserif,serif]{beamer}
\useoutertheme{infolines}
%\usepackage{tabularx}
%\usepackage{amsmath}
\graphicspath{{data/plot/plot_SR/}}
\title[Lo Cheuk Yee]{Search for chargino and neutralino production in final states with two same-sign leptons, jets and missing transverse momentum at $\sqrt{s} = 13$ TeV with the ATLAS detector}
\author[]
{
Samuel Lo
}
\institute[]
{
The University of Hong Kong
}
\date[]{\today}
\newcommand\Wider[2][2em]{%
\makebox[\linewidth][c]{%
\begin{minipage}{\dimexpr\textwidth+#1\relax}
\raggedright
\centering#2
\end{minipage}%
}%
}
\begin{document}
\frame{\titlepage}
%\frame{\tableofcontents}
\begin{frame}{Contents}
\begin{itemize}
\item Introduction
\item Experimental Setup
\item Background Estimation
\begin{itemize}
\item Charge Flip Background
\item Fake Lepton Background
\end{itemize}
\item Optimization for Signal Selection
\item Validation Region
\item Results
\end{itemize}
\end{frame}
\section{Introduction}
\begin{frame}
\begin{center}
\huge
Introduction
\end{center}
\end{frame}
\begin{frame}{Standard Model : Fundamental Particles}
\begin{itemize}
\item Standard Model(SM) is the current mainstream theory to describe the electromagnetic force, weak force and strong force.
\end{itemize}
\begin{figure}
\centering
\includegraphics[width=0.5\textwidth]{data/photo/theory/SM_particles.png}
\caption{The ``periodic'' table for all fundamental particles in SM.}
\end{figure}
\end{frame}
\begin{frame}{Standard Model : Success}
SM gained a huge success in predicting experimental results.
\begin{itemize}
\item With the W boson explaining the beta decay, the existence of the neutral Z boson was predicted and discovered later in 1980s.
\item The existence of a third generation of quarks was predicted in 1970s and top quark was discovered in 1990s.
\item Higgs boson was proposed in 1960s and discovered recently in 2012.
\end{itemize}
\end{frame}
\begin{frame}{Standard Model : Limitation}
\begin{itemize}
\item SM cannot explain the nature of dark matter.
\item The hierarchy problem
\begin{itemize}
\item Why the weak force is stronger than the gravity by $10^{24}$.
\item The Higgs boson mass is quadratically divergent due to the quantum corrections.
\end{itemize}
\item The electroweak interaction and the strong interaction cannot be unified in SM.
\end{itemize}
\end{frame}
\begin{frame}{Supersymmetry}
\begin{itemize}
\item Supersymmetry is one of the most promising theory.
\item Supersymmetry(SUSY) is a theoretical extension of the Standard Model.
\item It can solve the hierarchy problem of Higgs mass.
\item It can explain the nature of dark matter.
\item It unifies the electroweak interaction and the strong interaction at $\sim 10^{16}$ GeV.
\end{itemize}
\begin{figure}
\centering
\includegraphics[width=0.3\textwidth]{data/photo/theory/unification.png}
\caption{Black dashed lines are for SM. Red and blue lines are for SUSY.}
\end{figure}
\end{frame}
\begin{frame}{Supersymmetry}
\begin{itemize}
\item It predicts that each particle in the Standard Model has its own partner particle, called the superpartner (SUSY particle).
\item The spin of the superpartner will differ from the Standard Model particle by 1/2.
\item A symmetry between the fermions and bosons.
\end{itemize}
\begin{figure}
\centering
\includegraphics[width=0.4\textwidth]{data/photo/theory/SM-SUSY-diagram.jpg}
\caption{The particles in Standard Model and their corresponding superpartners and their names.}
\end{figure}
\end{frame}
\begin{frame}{Supersymmetry : Superpartners}
\begin{itemize}
\item In the simple SUSY models, we need two neutral Higgs fields ($H^0_u$ and $H^0_d$) and two charged Higgs fields ($H^+_u$ and $H^-_d$).
\item The superpartners of 4 neutral bosons $\gamma$, $Z$, $H^0_u$ and $H^0_d$ together form 4 mass eigenstates, called neutralinos: $\tilde{\chi}_1^0$, $\tilde{\chi}_2^0$, $\tilde{\chi}_3^0$ and $\tilde{\chi}_4^0$.
\item The superpartners of 4 charged bosons $W^+$, $W^-$, $H^+_u$ and $H^-_d$ together form two mass eigenstates with electric charge $\pm 1$, called charginos: $\tilde{\chi}_1^\pm$ and $\tilde{\chi}_2^\pm$.
\end{itemize}
\begin{table}[htbp]
\tiny
\centering
\scalebox{0.8}{
\begin{tabular}{|c|cccc|cccc|}
\hline
\hline
Type & SM particle & Symbol & Spin & R-parity & Superpartner & Symbol & Spin & R-parity \\
\hline
\hline
Fermions & Quark & $q$ & $\frac{1}{2}$ & +1 & Squark & $\tilde{q}$ & 0 & -1 \\
& Lepton & $l$ & $\frac{1}{2}$ & +1 & Slepton & $\tilde{l}$ & 0 & -1 \\
\hline
Gluon & Gluon & $g$ & $1$ & +1 & Gluino & $\tilde{g}$ & $\frac{1}{2}$ & -1 \\
\hline
Neutral EW Bosons & Photon & $\gamma$ & $1$ & +1
& & & & \\
& Z Boson & $Z$ & $1$ & +1
& Neutralinos & $\tilde{\chi}_1^0$, $\tilde{\chi}_2^0$, $\tilde{\chi}_3^0$, $\tilde{\chi}_4^0$ & $\frac{1}{2}$ & -1 \\
& Neutral Higgs & $H^0_u$, $H^0_d$ & $0$ & +1
& & & & \\
\hline
Charged EW Bosons & W Boson & $W^+$, $W^-$ & $1$ & +1
& Charginos & $\tilde{\chi}_1^\pm$, $\tilde{\chi}_2^\pm$ & $\frac{1}{2}$ & -1 \\
& Charged Higgs & $H^+_u$, $H^-_d$ & $0$ & +1
& & & & \\
\hline
\hline
\end{tabular}
}
\caption{\scriptsize The spin and R-parity for the Standard Model particles and their superpartners.}
\end{table}
\end{frame}
\begin{frame}{Supersymmetry : R-parity}
\begin{itemize}
\item All SM particles have R-parity $+1$, while all SUSY particles have R-parity $-1$.
\item If the R-parity is conserved, the lightest SUSY particle (LSP) cannot decay (stable).
\item If the LSP is neutral and interacts with matter only by the weak interaction and gravity, it could be a candidate for dark matter, for example the lightest neutralinos $\tilde{\chi}_1^0$.
\item The R-parity is assumed to be conserved.
\item Due to the conservation of R-parity, the SUSY particles can only be pair-produced, and will eventually decay into SM particles and the LSP.
\item The lightest neutralino $\tilde{\chi}_1^0$ is assumed to be the LSP.
\end{itemize}
\end{frame}
\begin{frame}{Our Signal Scenario : Motivation}
\begin{itemize}
\item In the recent searches for SUSY particles involved in strong interaction, their masses are suggested to be larger than 1 TeV.
\item In this case, the direct pair production of SUSY electroweak boson $\tilde{\chi}_1^\pm$ and $\tilde{\chi}_2^0$ may be the dominant SUSY production process at the LHC, if their masses are below 1 TeV.
\item Their masses are assumed to be the same, and denoted by $m_{\tilde{\chi}_1^\pm , \tilde{\chi}_2^0}$ (in simplified models).
\end{itemize}
\begin{figure}
\centering
\includegraphics[width=0.3\textwidth]{data/photo/theory/signal_feynman.png}
\end{figure}
\end{frame}
\begin{frame}{Our Signal Scenario : Decay Processes}
\begin{itemize}
\item $\tilde{\chi}_1^\pm \rightarrow W^{\pm} + \tilde{\chi}_1^0$, $W{^\pm} \rightarrow \ell^{\pm} + \nu$
\item $\tilde{\chi}_2^0 \rightarrow h + \tilde{\chi}_1^0$, $h \rightarrow \ell^{\pm} + \nu + \text{quarks}$
\item Two same-sign(SS) leptons (electron or muon)
\item A large missing energy is expected
\item Each quark will eventually become a particle shower within a narrow cone, called a jet, by the process of hadronization.
\end{itemize}
\begin{figure}
\centering
\includegraphics[width=0.3\textwidth]{data/photo/theory/signal_feynman.png}
\caption{The Feynman diagram for our Wh same-sign signal scenario.}
\end{figure}
\end{frame}
\begin{frame}{Our Signal Scenario : Sensitive Region}
\begin{itemize}
\item If the mass difference ($m_{\tilde{\chi}_1^\pm , \tilde{\chi}_2^0} - m_{\tilde{\chi}_1^0}$) is slightly larger than the Higgs mass, it is called the compressed region.
\item In the compressed region, one of the lepton may have low energy, due to the low momentum of the Higgs boson, and hence it may not be detected.
\item In this case, only 2 out of 3 leptons are detected.
\item Our search channel would be more sensitive than the 3-leptons channel in the compressed region.
\end{itemize}
\end{frame}
\section{Experimental Setup}
\begin{frame}
\begin{center}
\huge
Experimental Setup
\end{center}
\end{frame}
\begin{frame}{Experimental Setup : LHC}
\begin{itemize}
\item The Large Hadron Collider (LHC) is the most powerful circular particle accelerator in the world.
\item Its circumference is 27 km.
\item Two beams of protons will be accelerated in opposite direction to centre-of-mass energy 13 TeV.
\item One of the collision point is at the ATLAS detector.
\end{itemize}
\begin{figure}
\centering
\includegraphics[width=0.6\textwidth]{data/photo/detector/LHC.jpg}
\end{figure}
\end{frame}
\begin{frame}{Experimental Setup : ATLAS detector}
\begin{figure}
\centering
\includegraphics[width=\textwidth]{data/photo/detector/ATLAS.jpg}
\end{figure}
\end{frame}
\begin{frame}{Experimental Setup : ATLAS detector}
\begin{itemize}
\item The ATLAS detector consists of 3 main components:
\begin{enumerate}
\item Inner detector: It is a particle tracker. It measures the tracks of charged particles.
\item Calorimeter: It measures the energy of the particle and stops the particle. It consists of electromagnetic and hadronic calorimeters.
\item Muon spectrometer: It is a particle tracker for muons.
\end{enumerate}
\end{itemize}
\begin{figure}
\centering
\includegraphics[width=0.5\textwidth]{data/photo/detector/ATLAS_particles.jpg}
\end{figure}
\end{frame}
\begin{frame}{Basic kinematic variables}
\begin{equation*}
p_T = \sqrt{p_x^2 + p_y^2}
\end{equation*}
The pseudorapidity $\eta$ is defined by
\begin{equation*}
\eta = - \ln \Big( \tan \frac{\theta}{2} \Big)
\end{equation*}
The angle separation $\Delta R$ of two particles is defined as:
\begin{equation*}
\Delta R = \sqrt{(\Delta \phi) ^2 + (\Delta \eta) ^2} = \sqrt{(\phi_2 -\phi_1) ^2 + (\eta_2 - \eta_1) ^2}
\end{equation*}
\begin{figure}
\begin{columns}
\begin{column}{0.5\textwidth}
\centering
\includegraphics[width=0.7\textwidth]{data/photo/detector/impact_parameter.png}
\end{column}
\begin{column}{0.5\textwidth}
\centering
\includegraphics[width=0.5\textwidth]{data/photo/detector/pseudorapidity.png}
\end{column}
\end{columns}
\end{figure}
\end{frame}
\begin{frame}{Challenges of Background Estimatation}
In order to search for SUSY, we need to understand the SM background very well.
\begin{enumerate}
\item Reducible SM background: They are due to the limitation of our detector and the wrong identification of the particle. There are two dominant reducible SM backgrounds, which are estimated by the data-driven method.
\begin{itemize}
\item Charge flip background
\item Fake lepton background (dominant background)
\end{itemize}
\item Irreducible SM background: They are estimated by Monte Carlo (MC)
\begin{itemize}
\item VV: WZ, WW, ZZ
\item tt+V
\item Rare: VVV, multitop, Higgs
\end{itemize}
\end{enumerate}
\end{frame}
\section{Charge Flip Background}
\begin{frame}
\begin{center}
\huge
Charge Flip Background
\end{center}
\end{frame}
\begin{frame}{Charge Flip Background : Sources}
\begin{itemize}
\item The charge flip background is due to the mis-identification of the sign of the charge of a lepton (mainly electron) in the reconstruction.
\item The sign of the charge is determined by the direction of the curvature of the track. The charge may be reversed, or flipped.
\end{itemize}
\begin{figure}
\centering
\includegraphics[width=0.4\textwidth]{data/photo/charge_flip/Brem.jpg}
\caption{Bremsstrahlung and $\gamma$ conversion.}
\end{figure}
\begin{figure}
\centering
\includegraphics[width=0.3\textwidth]{data/photo/charge_flip/WrongTrack.png}
\caption{Track with high velocity}
\end{figure}
\end{frame}
\begin{frame}{Charge Flip Background : Charge Flip Rate}
\begin{itemize}
\item The probability that the charge of an electron is flipped is denoted by the charge-flip rate $\epsilon_i$, where the index i represents the dependency on the $p_T$ and $|\eta|$ of the electron.
\item The value of index i is defined by the index of the following grid splitting.
\begin{table}[htbp]
\centering
\begin{tabular}{|c|c|}
\hline
Variable & Boundary of the grids \\
\hline
$p_T$ (GeV) & 25, 60, 90, 130, 150, 1000 \\
\hline
$|\eta|$ & 0, 0.50, 1.00, 1.37, 1.52, 1.80, 2.00, 2.47 \\
\hline
\end{tabular}
\caption{Binning in $p_T$ and $|\eta|$ for the charge-flip rate $\epsilon_i$.}
\end{table}
\end{itemize}
\end{frame}
\begin{frame}{Charge Flip Background : Charge Flip Rate}
\begin{itemize}
\item Most of the same-sign charge-flip background comes from events with two opposite-sign electrons, with one of the charge is flipped.
\item The probability $p_{ij}$ that an OS data event becomes a SS data event (with the leading electron in bin $i$ and the sub-leading electron in bin $j$) is
\begin{equation*}
p_{ij} = (1 - \epsilon_i)\epsilon_j + (1 - \epsilon_j)\epsilon_i
\end{equation*}
\item It is called the charge flip weight.
\item The charge flip background can be estimated by applying the charge flip weights on all OS events in data.
\item The charge flip rates can be measured by the likelihood method described in the next slide.
\end{itemize}
\end{frame}
\begin{frame}{Charge Flip Background : Likelihood Method}
\begin{itemize}
\item We select $Z \rightarrow ee$ events in data by requiring the invariant mass of the two electrons is within the Z mass window cut of 80-100 GeV.
\item The events inside the Z mass window is then subtracted by the non-Zee processes, by using the sideband technique.
\item After the subtraction, the total number of event is denoted by $N^{ij}$, and the number of events with two same-sign leptons is denoted by $N^{ij}_{SS}$.
\item The $N^{ij}_{SS}$ is described by a Poisson distribution with the expected value $\lambda = N^{ij}p_{ij}$
\end{itemize}
\begin{equation*}
P(N^{ij}_{SS} | N^{ij}, \epsilon_i, \epsilon_j) = \frac{(N^{ij}p_{ij})^{N^{ij}_{SS}} e^{-N^{ij}p_{ij}}}{N^{ij}_{SS}!}
\end{equation*}
\end{frame}
\begin{frame}{Charge Flip Background : Likelihood Method}
\begin{itemize}
\item Converting it to the likelihood function L and taking the negative natural log yields
\end{itemize}
\begin{equation*}
\begin{split}
-\ln L &= -\ln\prod_{ij} P(N^{ij}_{SS} | N^{ij}, \epsilon_i, \epsilon_j) \\
&= - \sum_{ij} \Big[ N^{ij}_{SS} \ln (N^{ij}[\epsilon_i (1-\epsilon_j) + (1-\epsilon_i) \epsilon_j]) \\
&- N^{ij}[\epsilon_i (1-\epsilon_j) + (1-\epsilon_i) \epsilon_j] \Big] + \text{constant}
\end{split}
\end{equation*}
\begin{itemize}
\item where the summation over $i$ and $j$ is taken over all $p_T$ and $|\eta|$ bins of both electrons.
\item By minimizing this likelihood, the charge-flip rate can be estimated.
\end{itemize}
\end{frame}
\begin{frame}{Charge Flip Background : Result for Charge Flip Rate}
\begin{figure}
\centering
\includegraphics[width=0.6\textwidth]{data/plot/charge_flip/FitPlots/data_cf_rate_tot.eps}
\caption{The measured values of the charge-flip rate $\epsilon_i$ in data, with total uncertainties.}
\label{fig:charge_flip_data_tot}
\end{figure}
\end{frame}
\section{Fake Lepton Background}
\begin{frame}
\begin{center}
\huge
Fake Lepton Background
\end{center}
\end{frame}
\begin{frame}{Fake Lepton Background : Sources}
The source of the fake lepton is that other object (like jet and photon) is mis-identified as a lepton. Thay can be mainly classified into 3 types:
\begin{itemize}
\item Heavy-flavor fakes:
\begin{itemize}
\item leptons from the leptonic decays of heavy-quark (b or c) hadrons.
\end{itemize}
\item Light-flavor fakes:
\begin{itemize}
\item leptons from the leptonic decays of light-quark hadrons. \\ OR
\item It is due to the mis-identification of light-quark hadrons itself.
\end{itemize}
\item photon conversion:
\begin{itemize}
\item leptons from the pair production of a photon
\end{itemize}
\end{itemize}
\end{frame}
\begin{frame}{Fake Lepton Background : Matrix Method}
\begin{itemize}
\item The fake leptons is estimated by the matrix method.
\item The probability that a real lepton passes the tight selection criteria (i.e. tight lepton) is denoted by the real efficiency $\epsilon$.
\item The probability that a real lepton does not pass the tight selection criteria (i.e. loose lepton) is denoted by $\bar{\epsilon} = 1 - \epsilon$.
\item The probability that a fake lepton passes the tight selection criteria (i.e. tight lepton) is denoted by the fake efficiency $f$.
\item The probability that a fake lepton does not pass the tight selection criteria (i.e. loose lepton) is denoted by $\bar{f} = 1 - f$.
\end{itemize}
\begin{equation*}
\left( \begin{array}{c}
N_T \\
N_L
\end{array} \right)
=
\left( \begin{array}{cc}
\epsilon & f \\
\bar{\epsilon} & \bar{f}
\end{array} \right)
\left( \begin{array}{c}
N_R \\
N_F
\end{array} \right)
\end{equation*}
\end{frame}
\begin{frame}{Fake Lepton Background : Matrix Method}
Suppose we know $\left( \begin{array}{c}
N_T \\
N_L
\end{array} \right)$, we can find $N_F$ by inverting the matrix.
\begin{equation*}
\left( \begin{array}{c}
0 \\
N_F
\end{array} \right)
=
\left( \begin{array}{cc}
0 & 0 \\
0 & 1
\end{array} \right)
\left( \begin{array}{c}
N_R \\
N_F
\end{array} \right)
=
\left( \begin{array}{cc}
0 & 0 \\
0 & 1
\end{array} \right)
\left( \begin{array}{cc}
\epsilon & f \\
\bar{\epsilon} & \bar{f}
\end{array} \right)^{-1}
\left( \begin{array}{c}
N_T \\
N_L
\end{array} \right)
\end{equation*}
Then, we can find the number of tight lepton due to the fake lepton, $N_T'$
\begin{equation*}
\left( \begin{array}{c}
N_T' \\
N_L'
\end{array} \right)
=
\left( \begin{array}{cc}
\epsilon & f \\
\bar{\epsilon} & \bar{f}
\end{array} \right)
\left( \begin{array}{c}
0 \\
N_F
\end{array} \right)
\end{equation*}
\begin{equation*}
=
\left( \begin{array}{cc}
\epsilon & f \\
\bar{\epsilon} & \bar{f}
\end{array} \right)
\left( \begin{array}{cc}
0 & 0 \\
0 & 1
\end{array} \right)
\left( \begin{array}{cc}
\epsilon & f \\
\bar{\epsilon} & \bar{f}
\end{array} \right)^{-1}
\left( \begin{array}{c}
N_T \\
N_L
\end{array} \right)
\end{equation*}
\end{frame}
\begin{frame}{Fake Lepton Background : Matrix Method}
We can generalize the one-lepton case to the two-leptons case.
\begin{equation*}
\left( \begin{array}{c}
N_{TT} \\
N_{TL} \\
N_{LT} \\
N_{LL}
\end{array} \right)
=
\left( \begin{array}{cccc}
\epsilon_1 \epsilon_2 & \epsilon_1 f_2 & f_1 \epsilon_2 & f_1 f_2 \\
\epsilon_1 \bar{\epsilon_2} & \epsilon_1 \bar{f_2} & f_1 \bar{\epsilon_2} & f_1 \bar{f_2} \\
\bar{\epsilon_1} \epsilon_2 & \bar{\epsilon_1} f_2 & \bar{f_1} \epsilon_2 & \bar{f_1} f_2 \\
\bar{\epsilon_1} \bar{\epsilon_2} & \bar{\epsilon_1} \bar{f_2} & \bar{f_1} \bar{\epsilon_2} & \bar{f_1} \bar{f_2}
\end{array} \right)
\left( \begin{array}{c}
N_{RR} \\
N_{RF} \\
N_{FR} \\
N_{FF}
\end{array} \right)
\end{equation*}
where $\epsilon_1$ is the probability that a leading real lepton passes the signal selection (i.e. tight lepton), $\epsilon_2$ is the probability that a subleading real lepton passes the signal selection (i.e. tight lepton), etc.
\end{frame}
\begin{frame}{Fake Lepton Background : Matrix Method}
Similarly, we can find the number of tight-tight leptons due to the fake leptons, $N_{TT}'$
\begin{equation*}
\left( \begin{array}{c}
N_{TT}' \\
N_{TL}' \\
N_{LT}' \\
N_{LL}'
\end{array} \right)
=
\left( \begin{array}{cccc}
\epsilon_1 \epsilon_2 & \epsilon_1 f_2 & f_1 \epsilon_2 & f_1 f_2 \\
\epsilon_1 \bar{\epsilon_2} & \epsilon_1 \bar{f_2} & f_1 \bar{\epsilon_2} & f_1 \bar{f_2} \\
\bar{\epsilon_1} \epsilon_2 & \bar{\epsilon_1} f_2 & \bar{f_1} \epsilon_2 & \bar{f_1} f_2 \\
\bar{\epsilon_1} \bar{\epsilon_2} & \bar{\epsilon_1} \bar{f_2} & \bar{f_1} \bar{\epsilon_2} & \bar{f_1} \bar{f_2}
\end{array} \right)
\left( \begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array} \right)
\end{equation*}
\begin{equation*}
\left( \begin{array}{cccc}
\epsilon_1 \epsilon_2 & \epsilon_1 f_2 & f_1 \epsilon_2 & f_1 f_2 \\
\epsilon_1 \bar{\epsilon_2} & \epsilon_1 \bar{f_2} & f_1 \bar{\epsilon_2} & f_1 \bar{f_2} \\
\bar{\epsilon_1} \epsilon_2 & \bar{\epsilon_1} f_2 & \bar{f_1} \epsilon_2 & \bar{f_1} f_2 \\
\bar{\epsilon_1} \bar{\epsilon_2} & \bar{\epsilon_1} \bar{f_2} & \bar{f_1} \bar{\epsilon_2} & \bar{f_1} \bar{f_2}
\end{array} \right)^{-1}
\left( \begin{array}{c}
N_{TT} \\
N_{TL} \\
N_{LT} \\
N_{LL}
\end{array} \right)
\end{equation*}
\end{frame}
\begin{frame}{Fake Lepton Background : Results of Fake Efficiencies}
The method for measuring the fake efficiencies is described in the backup slides.
\begin{figure}
\begin{columns}
\begin{column}{0.5\textwidth}
\includegraphics[width=\textwidth]{data/plot/getFakeEffs/El_hEff.eps}
\caption{Electron fake efficiency}
\end{column}
\begin{column}{0.5\textwidth}
\includegraphics[width=\textwidth]{data/plot/getFakeEffs/Mu_hEff.eps}
\caption{Muon fake efficiency}
\end{column}
\end{columns}
\end{figure}
\end{frame}
\section{Signal Region}
\begin{frame}
\begin{center}
\huge
Signal Region
\end{center}
\end{frame}
\begin{frame}{Signal Region: Challenges}
Estimation of the signal sensitivity
\begin{itemize}
\item Cross section for our signal $\sim 0.1$ pb
\item Total luminosity in one year $\sim 10^4$ pb$^{-1}$
\item Expected number of signal events in one year $\sim 10^3$
\end{itemize}
\begin{itemize}
\item Time interval between each collision $= 25$ ns
\item Total number of collisions in one year $\sim 10^{15}$
\item The probability to have a signal event $\sim 10^{-12}$
\item Conclusion: the SUSY signal is very rare.
\end{itemize}
\end{frame}
\begin{frame}{Signal Region : Strategy}
In order to extract the rare signal, the following strategies are used.
\begin{itemize}
\item A trigger system are used when taking the data (online), to only store the interested events in the disk.
\item Some discriminant variables (based on the kinematic variables) are defined, to help distinguish the signal and the background.
\item Two dedicated signal regions are defined (SRjet1 and SRjet23) based on the discriminant variables, to maximize the signal sensitivity.
\end{itemize}
\end{frame}
\begin{frame}{Signal Region : discriminant variables}
\begin{itemize}
\item $n_{\text{jets}}$: Number of signal jets:
\item $n_{\text{b-jets}}$: Number of $b$-jets (jet from b quark).
\item $\Delta \eta_{ll}$: It is designed to estimate the angle between the two leptons.
\begin{equation*}
\Delta \eta_{ll} = |\eta_{1} - \eta_{2}|
\end{equation*}
\item $m_{\text{eff}}$: It is designed to estimate the total energy and momentum of the charginos $\tilde{\chi}_1^\pm$ and neutralinos $\tilde{\chi}_2^0$.
\begin{equation*}
m_{\text{eff}} = p_T^1 + p_T^2 + E_T^{\text{miss}} + \sum_{\text {signal jets}} p_T
\end{equation*}
\item $m_{ll}$: The invariant mass of the 4-momentum sum of the two leptons
\begin{equation*}
(m_{ll})^2 = (p_1 + p_2)^2
\end{equation*}
\end{itemize}
\end{frame}
\begin{frame}{Signal Region : discriminant variables}
\begin{itemize}
\item The missing momentum ${\bf p}^{\text{miss}}$ due to undetected particles is defined by
\begin{equation*}
{\bf p}^{\text{miss}} = - \sum_{\text{All detected particles}}{\bf p}
\end{equation*}
\item $E_{T}^{\text{miss}}$ or MET: The transverse missing erengy is designed to estimate the missing energy from the undetected particles.
\begin{equation*}
E_{T}^{\text{miss}} = |{\bf p}_T^{\text{miss}}| = \sqrt{ (p_x^{\text{miss}})^2 + (p_y^{\text{miss}})^2}
\end{equation*}
\end{itemize}
\end{frame}
\begin{frame}{Signal Region : discriminant variables}
\begin{itemize}
\item $m_T$: It is designed to reconstruct the mass of the W boson.
\begin{equation*}
m_T = \sqrt{ 2 p_T^1 E_T^{\text{miss}} ( 1 - \cos{\Delta\phi} ) }
\end{equation*}
where $\Delta\phi$ is the azimuthal angle between the leading lepton and the missing transverse momentum.
\item $m_{T2}$: It is designed to set a lower bound on the masses of charginos $\tilde{\chi}_1^\pm$ and neutralinos $\tilde{\chi}_2^0$.
\begin{equation*}
m_{T2} = \min_{{\bf q}_T} \Bigg[ \max \bigg( m_T( {\bf p}_T^1, {\bf q}_T ), m_T( {\bf p}_T^2, {\bf p}_T^{\text{miss}} - {\bf q}_T ) \bigg) \Bigg]
\end{equation*}
\begin{equation*}
m_T( {\bf p}_T, {\bf q}_T ) = \sqrt{ 2 p_T q_T ( 1 - \cos{\Delta\phi} ) }
\end{equation*}
\end{itemize}
\end{frame}
\begin{frame}{Signal Region : discriminant variables}
\begin{itemize}
\item $m_{lj}$ or $m_{ljj}$: It is designed to reconstruct the mass of the Higgs boson.
\begin{equation*}
p_{\text{jet-system}} =
\left\{
\begin{array}{ll}
p_{\text{jet1}} &\text{ for SRjet1 (1 jet)}\\
p_{\text{jet1}} + p_{\text{jet2}} &\text{ for SRjet23 (2 or 3 jets)}
\end{array} \right.
\end{equation*}
\begin{equation*}
p_{\text{closest-lepton}} =
\left\{
\begin{array}{ll}
p_{\ell 1} &\text{ if } \Delta R(p_{\ell 1},p_{\text{jet-system}}) \leq \Delta R(p_{\ell 2},p_{\text{jet-system}}) \\
p_{\ell 2} &\text{ if } \Delta R(p_{\ell 1},p_{\text{jet-system}}) > \Delta R(p_{\ell 2},p_{\text{jet-system}})
\end{array} \right.
\end{equation*}
\begin{equation*}
(m_{lj(j)})^2 = (p_{\text{closest-lepton}} + p_{\text{jet-system}})^2
\end{equation*}
\end{itemize}
\end{frame}
\begin{frame}{Signal Region}
\begin{itemize}
\item Signal Region(SR) is defined by applying a set of selections with discriminant variables, such that the signal sensitivity is high.
\item By trying different sets of selections, the signal region with the highest signal sensitivity can be found. This process is called the signal region optimization.
\item In the SR optimization, the MC signal and background are used to study the expected sensitivity.
\end{itemize}
Before the signal region optimization, the following pre-selection are applied.
\begin{itemize}
\item Exactly 2 leptons with $p_T > 25$ GeV.
\item Electron: $|\eta| < 2.47$ ; Muon: $|\eta| < 2.4$
\item The two leptons are same-sign in electric charge (SS).
\item $n_{\text{b-jets}} = 0$, to reduce the SM background from top quark.
\item Two signal regions: SRjet1 with $n_{\text{jets}} = 1$, SRjet23 with $n_{\text{jets}} = 2$ or $3$.
\end{itemize}
\end{frame}
\begin{frame}{Signal Region : Pre-selection plots}
\Wider{
\includegraphics[width=0.49\textwidth]{meff_SR_SS_jet1_pre}
\includegraphics[width=0.49\textwidth]{meff_SR_SS_jet23_pre}
}
\end{frame}
\begin{frame}{Signal Region : Optimizied Event Selection}
\input{data/plot/plot_SR/cut_table_SR_SS_opt_0.tex}
\end{tabular}
\end{frame}
\begin{frame}{Signal Region : Expected Yields and Sensitivity}
\begin{table}[htbp]
\centering
\tiny
\begin{columns}
\begin{column}{0.5\textwidth}
\begin{tabular}{|c|c|c|}
\hline
& Number of events & Significance \\
\hline
\input{data/plot/plot_SR/SR_SS_jet1_opt_0_3dp.tex}
\end{tabular}
\caption{\tiny Yields in SRjet1}
\end{column}
\begin{column}{0.5\textwidth}
\begin{tabular}{|c|c|c|}
\hline
& Number of events & Significance \\
\hline
\input{data/plot/plot_SR/SR_SS_jet23_opt_0_3dp.tex}
\end{tabular}
\caption{\tiny Yields in SRjet23}
\end{column}
\end{columns}
\end{table}
\end{frame}
\begin{frame}{Signal Region : N-1 plots}
\Wider{
\includegraphics[width=0.49\textwidth]{mTtwo_SR_SS_jet1_opt_0}
\includegraphics[width=0.49\textwidth]{mTtwo_SR_SS_jet23_opt_0}
}
\end{frame}
\section{Validation Region}
\begin{frame}
\begin{center}
\huge
Validation Region
\end{center}
\end{frame}
\begin{frame}{Validation Region: Introduction}
\begin{itemize}
\item The validation region(VR) is designed to ensure that the estimation of background is reliable.
\item Method: The backgrounds are compared with the data, to see whether they agree with each other.
\item One VR is defined for each SR: VRjet1 and VRjet23.
\end{itemize}
There are three requirements for the validation regions:
\begin{itemize}
\item The signal contribution should be small.
\item The validation region is orthogonal to the corresponding signal region.
\item The background composition is similar to the corresponding signal region.
\end{itemize}
\end{frame}
\begin{frame}{Validation Region: Method}
\begin{itemize}
\item In order to make the VR orthogonal to its SR, $E_T^{\text{miss}}$/$m_{T}$ cut is inverted.
\item Adjust its lower cut, to have a similar background composition as in its SR.
\item Invert the $m_{lj}$/$m_{ljj}$ cut, to reduce the signal.
\item Remove $m_{T2}$ and $m_{\text{eff}}$ cuts, to increase statistics.
\end{itemize}
\begin{table}[htbp]
\begin{center}
\begin{tabular}{|c|c|c|}
\hline
Cut & VRjet1 & VRjet23 \\
\hline
\hline
$n_{\text{jets}}$ & 1 & $[2,3]$ \\
$\Delta \eta_{ll}$ & $<1.5$ & $-$ \\
$E_T^{\text{miss}}$ [GeV] & \textcolor{red}{ $[70,100]$ } & $>100$ \\
$m_T$ [GeV] & $>140$ & \textcolor{red}{$[65,120]$} \\
$m_{\text{eff}}$ [GeV] & $\textcolor{red}{-}$ & $>240$ \\
$m_{lj(j)}$ [GeV] & \textcolor{red}{$>130$} & \textcolor{red}{$>130$} \\
$m_{T2}$ [GeV] & $\textcolor{red}{-}$ & $\textcolor{red}{-}$ \\
\hline
\end{tabular}
\end{center}
\end{table}
\end{frame}
\begin{frame}{Validation Region: Yield}
\begin{table}
\begin{center}
\begin{tabular}{|l|c|c|}
\hline
\hline
Process & VRjet1 & VRjet23 \\
\hline
\hline
Rare & $0.775\pm 0.389^{+0.661}_{-0.362}$ & $2.469 \pm 0.674^{+0.998} _{-0.899}$ \\
$t\bar{t}V$ & $0.039\pm 0.013^{+0.018}_{-0.012}$ & $0.959 \pm 0.082^{+0.152} _{-0.146}$ \\
ZZ & $0.298\pm 0.060^{+0.089}_{-0.063}$ & $0.247 \pm 0.045^{+0.113} _{-0.047}$ \\
WZ & $4.909\pm 0.530^{+0.960}_{-0.899}$ & $19.325\pm 0.643^{+4.393} _{-4.346}$ \\
WW & $0.801\pm 0.051^{+0.123}_{-0.060}$ & $10.477\pm 0.176^{+0.796} _{-0.726}$ \\
Charge flip & $1.997\pm 0.128^{+0.260}_{-0.260}$ & $2.065 \pm 0.085^{+0.166} _{-0.166}$ \\
Fakes & $8.021\pm 1.390^{+5.806}_{-5.806}$ & $19.990\pm 2.013^{+13.461}_{-13.461}$ \\
\hline
Total BG & $16.839\pm 1.545^{+5.915}_{-5.912}$ & $55.534\pm 2.228^{+14.396}_{-14.332}$ \\
\hline
\hline
Data & $17$ & $54$ \\
\hline
\hline
\end{tabular}
\caption{The uncertainties include the statistical and systematic uncertainties.}
\label{tab:VR_yields}
\end{center}
\end{table}
The distribution plots for different variables are in the backup slides.
\end{frame}
\section{Results}
\begin{frame}
\begin{center}
\huge
Results
\end{center}
\end{frame}
\begin{frame}{Results: Observed Events}
\begin{itemize}
\item The observed events were consistent with the prediction in the SM.
\end{itemize}
\begin{table}[htbp]
\centering
\begin{columns}
\begin{column}{0.5\textwidth}
\begin{tabular}{|c|c|c|}
\hline
& Number of events \\
\hline
\input{data/plot/plot_SR/SR_SS_jet1_opt_0_3dp_obs.tex}
\end{tabular}
\caption{Yields in SRjet1}
\end{column}
\begin{column}{0.5\textwidth}
\begin{tabular}{|c|c|c|}
\hline
& Number of events \\
\hline
\input{data/plot/plot_SR/SR_SS_jet23_opt_0_3dp_obs.tex}
\end{tabular}
\caption{Yields in SRjet23}
\end{column}
\end{columns}
\end{table}
\end{frame}
\begin{frame}{Results: Exclusion Limits}
\begin{itemize}
\item New exclusion limits on the mass points were set, by combining the two SR.
\item This means that the mass points inside the contour line are rejected with 95\% confidence level.
\item The exclusion limits for the masses of $\tilde{\chi}_1^\pm$ and $\tilde{\chi}_2^0$ are extended up to 245 GeV, and the exclusion limits for the mass of $\tilde{\chi}_1^0$ are extended up to 40 GeV.
\end{itemize}
\begin{figure}
\centering
\includegraphics[width=0.5\textwidth]{data/plot/HistFitterResults/contourPlotterWhSS_upperLimit.pdf}
\end{figure}
\end{frame}
\begin{frame}{Conclusion}
\begin{itemize}
\item By using the ATLAS data with total integrated luminosity 36.1 fb$^{-1}$, we searched for the electroweak pair production of a chargino and a neutralino
($p + p \rightarrow \tilde{\chi}_1^\pm + \tilde{\chi}_2^0$), with the Wh channel $\tilde{\chi}_1^\pm \rightarrow \tilde{\chi}_1^0 + W$ and $\tilde{\chi}_2^0 \rightarrow \tilde{\chi}_1^0 + h$, and the same-sign channel.
\item The numbers of observed events in data were consistent with the prediction in the SM.
\item The exclusion limits for the masses of $\tilde{\chi}_1^\pm$ and $\tilde{\chi}_2^0$ are extended up to 245 GeV, and the exclusion limits for the mass of $\tilde{\chi}_1^0$ are extended up to 40 GeV, with 95\% confidence level.
\end{itemize}
\end{frame}
\begin{frame}{Acknowledgments}
\begin{itemize}
\item Thank my supervisor Yanjun Tu for her guidance and suggestions on my analysis.
\item Thank Dongliang Zhang for teaching me all technical stuff on my analysis.
\item Thank Daniela Paredes for her help and suggestions on my analysis.
\end{itemize}
\end{frame}
\begin{frame}
\begin{center}
\huge
Thank You
\end{center}
\end{frame}
\section{Backup}
\begin{frame}
\begin{center}
\huge
Backup
\end{center}
\end{frame}
\begin{frame}{My Contribution}
\begin{itemize}
\item All the study and results I show here are made by me.
\item Some of them are selected for publication.
\item Others are cross-check to the work by the post-doc in the group.
\end{itemize}
\end{frame}
\begin{frame}{Standard Model : Fundamental Interaction}
\begin{columns}
\begin{column}{0.5\textwidth}
\begin{figure}
\centering
\includegraphics[width=\textwidth]{data/photo/theory/vertices_SM_circle.png}
\caption{All allowed fundamental Feynman vertices in SM, except higgs-related vertices.}
\end{figure}
\end{column}
\begin{column}{0.5\textwidth}
\begin{figure}
\centering
\includegraphics[width=\textwidth]{data/photo/theory/vertices_higgs_circle.png}
\caption{All allowed fundamental higgs-related Feynman vertices in SM.}
\end{figure}
\end{column}
\end{columns}
\end{frame}
\subsection{Supersymmetry : R-parity}
\begin{frame}{Supersymmetry : R-parity}
\begin{itemize}
\item The baryon number $B$ is defined by $\frac{1}{3} (n_q - n_{\bar{q}})$, where $n_q$ is the number of quarks and $n_{\bar{q}}$ is the number of anti-quarks.
\item The lepton number $L$ is defined by $n_l - n_{\bar{l}}$, where $n_l$ is the number of leptons and $n_{\bar{l}}$ is the number of anti-leptons.
\item In SM, $(B-L)$ is conserved. But in SUSY, it is no longer conserved.
\item To keep $(B-L)$ conservation and prevent the proton decay, the R-parity $P_R$ is introduced.
\begin{equation*}
P_R = (-1)^{3(B-L)-2s}
\end{equation*}
where s is the spin.
\end{itemize}
\end{frame}
\subsection{Charge Flip Background : Likelihood Method}
\begin{frame}
\begin{center}
\huge
Charge Flip Background : Likelihood Method
\end{center}
\end{frame}
\begin{frame}{Likelihood Method : Method}
\begin{itemize}
\item The probability that the charge of an electron is flipped is denoted by the charge-flip rate $\epsilon_i$, where the index i represents the dependency on the $p_T$ and $|\eta|$ of the electron.
\item The value of index i is defined by the index of the following grids in the table.