-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtests.py
356 lines (263 loc) · 13.8 KB
/
tests.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
import logging
from pathlib import Path
import time
import torch
from tqdm import tqdm
import detectors
import utils
import adversarial_dataset
logger = logging.getLogger(__name__)
# TODO: A volte attack_config è prima di generation_kwargs, a volte dopo
SIMILARITY_THRESHOLD = 1e-6
def accuracy(model, loader, device):
correct_count = 0
total_count = 0
model.to(device)
for images, true_labels in tqdm(loader, desc='Accuracy Test'):
total_count += len(images)
images = images.to(device)
true_labels = true_labels.to(device)
predicted_labels = utils.get_labels(model, images).detach()
correct = torch.eq(predicted_labels, true_labels)
correct_count += len(torch.nonzero(correct))
return correct_count / total_count
def attack_test(model, attack, loader, p, misclassification_policy, device, attack_configuration, generation_kwargs, start, stop, defended_model, blind_trust=False):
if attack.targeted:
raise NotImplementedError('Targeted attack tests are not supported.')
logger.debug('Misclassification policy: %s.', misclassification_policy)
logger.debug('Blind trust: %s', blind_trust)
if misclassification_policy == 'remove':
logger.warning('Remember that using "remove" as a misclassification policy can interfere with dataset merging.')
model.to(device)
all_images = []
all_labels = []
all_true_labels = []
all_adversarials = []
for images, true_labels in tqdm(loader, desc='Attack Test'):
images = images.to(device)
true_labels = true_labels.to(device)
assert len(images) == len(true_labels)
images, true_labels, labels = utils.apply_misclassification_policy(
model, images, true_labels, misclassification_policy)
if len(images) == 0:
assert misclassification_policy == 'remove'
logger.warning('0 images left after removing misclassified, skipping batch.')
continue
adversarials = attack.perturb(images, y=labels).detach()
assert adversarials.shape == images.shape
if blind_trust:
adversarials = list(adversarials)
else:
if defended_model is None:
adversarials = utils.remove_failed(
model, images, labels, adversarials, False)
else:
adversarials = utils.remove_failed(
defended_model, images, labels, adversarials, True)
# Move to CPU
images = images.cpu()
labels = labels.cpu()
true_labels = true_labels.cpu()
for i in range(len(adversarials)):
if adversarials[i] is not None:
adversarials[i] = adversarials[i].cpu()
all_images += list(images)
all_labels += list(labels)
all_true_labels += list(true_labels)
all_adversarials += list(adversarials)
assert len(all_images) == len(all_labels)
assert len(all_images) == len(all_true_labels)
assert len(all_images) == len(all_adversarials)
return adversarial_dataset.AdversarialDataset(all_images, all_labels, all_true_labels, all_adversarials, p, misclassification_policy, attack_configuration, start, stop, generation_kwargs)
def mip_test(model, attack, loader, p, misclassification_policy, device, attack_configuration, generation_kwargs, start, stop, pre_adversarial_dataset=None, gurobi_log_dir=None):
test_start_timestamp = time.time()
if attack.targeted:
raise NotImplementedError('Targeted attack tests are not supported.')
if misclassification_policy == 'remove':
logger.warning('Remember that using "remove" as a misclassification policy can interfere with dataset merging.')
model.to(device)
all_images = []
all_labels = []
all_true_labels = []
all_adversarials = []
all_lower_bounds = []
all_upper_bounds = []
all_elapsed_times = []
all_extra_infos = []
test_loop_start_timestamp = time.time()
for index, (images, true_labels) in tqdm(enumerate(loader), desc='MIP Test'):
images = images.to(device)
true_labels = true_labels.to(device)
assert len(images) == len(true_labels)
images, true_labels, labels = utils.apply_misclassification_policy(
model, images, true_labels, misclassification_policy)
if len(images) == 0:
assert misclassification_policy == 'remove'
logger.warning('0 images left after removing misclassified, skipping batch.')
continue
if pre_adversarial_dataset is None:
pre_images = None
pre_adversarials = None
else:
matching_indices = pre_adversarial_dataset.index_of_genuines(
images)
if any(i == -1 for i in matching_indices):
raise RuntimeError('Could not find a matching element in the pre-adversarial dataset '
'for a genuine. Check that the correct pre-adversarial set is being used.')
pre_images = [pre_adversarial_dataset.genuines[i]
for i in matching_indices]
pre_labels = [pre_adversarial_dataset.labels[i]
for i in matching_indices]
pre_true_labels = [pre_adversarial_dataset.true_labels[i]
for i in matching_indices]
pre_adversarials = [pre_adversarial_dataset.adversarials[i]
for i in matching_indices]
assert len(pre_images) == len(labels) == len(true_labels) == len(images)
assert len(pre_adversarials) == len(images)
for i in range(len(pre_images)):
assert pre_images[i].shape == images[i].shape
pre_images[i] = pre_images[i].to(device)
pre_labels[i] = pre_labels[i].to(device)
pre_true_labels[i] = pre_true_labels[i].to(device)
assert torch.eq(labels[i], pre_labels[i])
assert torch.eq(true_labels[i], pre_true_labels[i])
if pre_adversarials[i] is not None:
assert pre_adversarials[i].shape == images[i].shape
pre_adversarials[i] = pre_adversarials[i].to(device)
# Check that the images are the same
all_match = all([torch.max(torch.abs(image - pre_image))
< SIMILARITY_THRESHOLD for image, pre_image in zip(images, pre_images)])
if not all_match:
raise RuntimeError('The pre-adversarials refer to different genuines. '
'This can slow down MIP at best and make it fail at worst. '
'Check that the correct pre-adversarial dataset is being used.')
adversarials, lower_bounds, upper_bounds, elapsed_times, extra_infos = attack.perturb_advanced(
images, y=labels, starting_points=pre_adversarials, gurobi_log_dir=None if gurobi_log_dir is None else Path(gurobi_log_dir) / f'batch_{index}')
assert len(adversarials) == len(images)
assert len(adversarials) == len(lower_bounds)
assert len(adversarials) == len(upper_bounds)
assert len(adversarials) == len(elapsed_times)
assert len(adversarials) == len(extra_infos)
# Move to CPU
images = images.cpu()
labels = labels.cpu()
true_labels = true_labels.cpu()
adversarials = [None if adversarial is None else adversarial.detach().cpu() for adversarial in adversarials]
all_images += list(images)
all_labels += list(labels)
all_true_labels += list(true_labels)
all_adversarials += list(adversarials)
all_lower_bounds += list(lower_bounds)
all_upper_bounds += list(upper_bounds)
all_elapsed_times += list(elapsed_times)
all_extra_infos += list(extra_infos)
test_loop_end_timestamp = time.time()
assert len(all_images) == len(all_labels)
assert len(all_images) == len(all_true_labels)
assert len(all_images) == len(all_adversarials)
assert len(all_images) == len(all_lower_bounds)
assert len(all_images) == len(all_upper_bounds)
assert len(all_images) == len(all_elapsed_times)
test_end_timestamp = time.time()
global_extra_info = {
'times' : {
'mip_test' : {
'start_timestamp' : test_start_timestamp,
'end_timestamp' : test_end_timestamp
},
'mip_test_loop' : {
'start_timestamp' : test_loop_start_timestamp,
'end_timestamp' : test_loop_end_timestamp
}
}
}
return adversarial_dataset.MIPDataset(all_images, all_labels, all_true_labels, all_adversarials, all_lower_bounds, all_upper_bounds, all_elapsed_times, all_extra_infos, p, misclassification_policy, attack_configuration, start, stop, generation_kwargs, global_extra_info)
def multiple_evasion_test(model, test_names, attacks, defended_models, loader, p, misclassification_policy, device, attack_configuration, start, stop, generation_kwargs):
assert all(not attack.targeted for attack in attacks)
assert all(attack.predict == defended_model.predict for attack,
defended_model in zip(attacks, defended_models))
if misclassification_policy == 'remove':
logger.warning('Remember that using "remove" as a misclassification policy can interfere with dataset merging.')
model.to(device)
for defended_model in defended_models:
defended_model.to(device)
assert len(test_names) == len(attacks)
assert len(test_names) == len(defended_models)
all_images = []
all_true_labels = []
all_attack_results = []
for images, true_labels in tqdm(loader, desc='Multiple Evasion Test'):
images = images.to(device)
true_labels = true_labels.to(device)
images, true_labels, labels = utils.apply_misclassification_policy(
model, images, true_labels, misclassification_policy)
if len(images) == 0:
assert misclassification_policy == 'remove'
logger.warning('0 images left after removing misclassified, skipping batch.')
continue
attack_results = [dict() for _ in range(len(images))]
for test_name, attack, defended_model in zip(test_names, attacks, defended_models):
# Nota y=labels
adversarials = attack.perturb(images, y=labels).detach()
assert adversarials.shape == images.shape
adversarials = utils.remove_failed(
defended_model, images, labels, adversarials, True)
for i in range(len(images)):
# Move to CPU and save
attack_results[i][test_name] = adversarials[i].cpu()
images = images.cpu()
labels = labels.cpu()
all_images += list(images)
all_true_labels += list(true_labels)
all_attack_results += attack_results
assert len(all_true_labels) == len(all_images)
assert len(all_attack_results) == len(all_images)
return adversarial_dataset.AttackComparisonDataset(all_images, all_true_labels, test_names, all_attack_results, p, misclassification_policy, attack_configuration, start, stop, generation_kwargs)
def multiple_attack_test(model, attack_names, attacks, loader, p, misclassification_policy, device, attack_configuration, start, stop, generation_kwargs, indices_override=None):
assert all(not attack.targeted for attack in attacks)
assert len(attack_names) == len(attacks)
logger.debug('Running multiple attack tests with attacks %s.', attack_names)
if misclassification_policy == 'remove':
logger.warning('Remember that using "remove" as a misclassification policy can interfere with dataset merging.')
model.to(device)
all_images = []
all_labels = []
all_true_labels = []
all_attack_results = []
for images, true_labels in tqdm(loader, desc='Multiple Attack Test'):
images = images.to(device)
true_labels = true_labels.to(device)
# true_labels are the labels in the dataset, while labels are
# the labels that will be used by the attack (which may or may not
# be the same as true_labels, depending on the misclassification policy)
images, true_labels, labels = utils.apply_misclassification_policy(
model, images, true_labels, misclassification_policy)
if len(images) == 0:
assert misclassification_policy == 'remove'
logger.warning('0 images left after removing misclassified, skipping batch.')
continue
attack_results = [dict() for _ in range(len(images))]
for test_name, attack in zip(attack_names, attacks):
# Note y=labels
adversarials = attack.perturb(images, y=labels).detach()
assert adversarials.shape == images.shape
adversarials = utils.remove_failed(
model, images, labels, adversarials, False)
for i in range(len(images)):
# Move to CPU and save
if adversarials[i] is None:
attack_results[i][test_name] = None
else:
attack_results[i][test_name] = adversarials[i].cpu()
images = images.cpu()
labels = labels.cpu()
true_labels = true_labels.cpu()
all_images += list(images)
all_labels += list(labels)
all_true_labels += list(true_labels)
all_attack_results += attack_results
assert len(all_labels) == len(all_images)
assert len(all_true_labels) == len(all_images)
assert len(all_attack_results) == len(all_images)
logger.debug('Collected %s results.', len(all_attack_results))
return adversarial_dataset.AttackComparisonDataset(all_images, all_labels, all_true_labels, attack_names, all_attack_results, p, misclassification_policy, attack_configuration, start, stop, generation_kwargs, indices_override=indices_override)