-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpose_detection.py
69 lines (53 loc) · 3.48 KB
/
pose_detection.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
import argparse
import os
import shutil
from Training.training import train, train_img_2_bone
from Data_Utils.normalize import normalize_data, normalize_image_data
from datetime import datetime
def parse_args():
desc = "An autoencoder for pose similarity detection"
parser = argparse.ArgumentParser(description=desc)
parser.add_argument('--base_data_dir', type=str, default="Data/", help='The directory that holds the image data')
parser.add_argument('--input_data_dir', type=str, default="CSV_X/", help='The directory for CSV input data')
parser.add_argument('--input_img_data_dir', type=str, default="Image_X/", help='The directory for CSV input data')
parser.add_argument('--output_data_dir', type=str, default="CSV_Y/", help='The directory for CSV input data')
parser.add_argument('--base_results_dir', type=str, default="/", help='The base directory to hold the results')
parser.add_argument('--output_test_csv_dir', type=str, default="CSV/", help='The directory for result csvs')
parser.add_argument('--output_test_graph_dir', type=str, default="Graph/", help='The directory for result csvs')
parser.add_argument('--saved_model_dir', type=str, default="Saved_Models/", help='The directory for input data')
parser.add_argument('--history_dir', type=str, default="History/", help='The directory for input data')
parser.add_argument('--num_epochs', type=int, default=100, help='The number of epochs')
parser.add_argument('--batch_size', type=int, default=128, help='The size of batch')
parser.add_argument('--csv_dims', type=int, default=156, help='The number of csv channels')
parser.add_argument('--input_channels', type=int, default=2, help='The number of input bone dims')
parser.add_argument('--output_channels', type=int, default=2, help='The number of input bone dims')
parser.add_argument('--latent_dim', type=int, default=64, help='the size of the latent dim')
parser.add_argument('--print_freq', type=int, default=5, help='How often is the status printed')
parser.add_argument('--save_freq', type=int, default=10, help='How often is the model saved')
parser.add_argument('--save_best_only', action='store_true')
parser.add_argument('--print_csv', action='store_true')
parser.add_argument('--continue_training', action='store_true')
parser.add_argument('--saved_weights_path', type=str, default="N/A", help='the path of the saved weights')
parser.add_argument('--notes', type=str, default="N/A", help='A description of the experiment')
parser.add_argument('--experiment_name', type=str, default="", help='A name for the experiment')
parser.add_argument('--img_2_bone', action='store_true')
return parser.parse_args()
def main():
args = parse_args()
args.experiment_name = datetime.now().strftime("%Y_%m_%d_%H_%M") + "_" + args.experiment_name
args.base_results_dir = os.path.join(args.base_results_dir,args.experiment_name)
if(not os.path.exists(args.base_results_dir)):
os.makedirs(args.base_results_dir)
os.makedirs(os.path.join(args.base_results_dir,"CSV"))
os.makedirs(os.path.join(args.base_results_dir,"Graph"))
os.makedirs(os.path.join(args.base_results_dir,"History"))
os.makedirs(os.path.join(args.base_results_dir,"Saved_Models"))
if(args.img_2_bone):
normalize_image_data(args)
train_img_2_bone(args)
else:
normalize_data(args)
train(args)
print("done training")
if __name__ == '__main__':
main()