-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathtrain.py
202 lines (166 loc) · 5.79 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
import argparse
import json
from collections import defaultdict
from copy import deepcopy
from datetime import datetime
from pathlib import Path
from time import ctime, time_ns
from typing import Any
from ast import literal_eval
import flax
import wandb
from tqdm import tqdm
from matfusion_jax import vis
from matfusion_jax.data import Generator
from matfusion_jax.model import Model
from matfusion_jax.config import default_modes
# frozendict screws things up in old versions
flax.config.update('flax_return_frozendict', False)
def override_pair(x: str) -> tuple[str, Any]:
(k, v) = x.split('=', 1)
v = literal_eval(v)
return k, v
parser = argparse.ArgumentParser(description='Train an svbrdf model.')
parser.add_argument('--dataset', type=Path, required=True)
parser.add_argument('--mode', type=str, choices=default_modes.keys())
parser.add_argument('--mode_json', type=Path)
parser.add_argument('-O', '--override', type=override_pair, nargs='*', default=[])
parser.add_argument('--epocs', type=int, required=True)
parser.add_argument('--workers', type=int, default=16)
parser.add_argument('--test_batch_size', type=int, default=16)
parser.add_argument('--accumulation', type=int, default=1)
parser.add_argument('--log_every', type=int, default=50)
parser.add_argument('--test_steps', type=int, default=20)
parser.add_argument('--test_count', type=int, default=10)
parser.add_argument('--test_dataset', type=Path, default=Path('datasets/test_rasterized.yml'))
parser.add_argument('--finetune_checkpoint', type=Path)
parser.add_argument('--resume_checkpoint', type=Path)
parser.add_argument('--run_name', type=str)
parser.add_argument('--output_checkpoint', type=Path)
parser.add_argument('--wandb', action='store_true')
parser.add_argument('--seed', type=int, default=42)
args = parser.parse_args()
if args.mode_json is not None:
mode = json.loads(args.mode_json.read_text())
elif args.mode is not None:
mode = deepcopy(default_modes[args.mode])
else:
assert False, 'must supply --mode or --mode_json'
for (k, v) in args.override:
mode[k] = v
print(json.dumps(mode, indent=2))
if args.wandb:
wandb.init(
project="svbrdf-diffusion",
config=mode,
)
assert wandb.run is not None
name = wandb.run.name
else:
name = datetime.utcnow().isoformat()
if args.run_name:
name = args.run_name
results_path = Path(f'./results/training_{name}')
checkpoint_path = args.output_checkpoint or Path(f'./checkpoints/{name}')
print(f'saving checkpoints to {checkpoint_path}')
if args.wandb:
print('saving test results to Weights & Biases')
train_vis = vis.WandbReport()
else:
print(f'saving test results to {results_path}')
results_path.mkdir(parents=True, exist_ok=True)
train_vis = vis.ResultsReport(results_path)
gen = Generator(
args.dataset,
seed=args.seed,
batch_size=mode['batch_size'],
replicates=1,
worker_count=args.workers,
)
test_gen = Generator(
args.test_dataset,
seed=0,
batch_size=args.test_batch_size,
replicates=1,
worker_count=1,
)
train = Model(
gen.resolution,
mode,
accumulation=args.accumulation,
)
train.init_model()
model_table = train.visulize()
if args.wandb:
wandb.log({
'model_summary': wandb.Html(f'<pre>{model_table}</pre>'),
}, commit=False)
else:
(results_path / 'model_summary.txt').write_text(model_table)
if args.finetune_checkpoint is not None:
train.load_finetune_checkpoint(args.finetune_checkpoint)
if args.resume_checkpoint is not None:
train.load_resume_checkpoint(args.resume_checkpoint)
train.replicate()
checkpoint_path.mkdir(parents=True, exist_ok=True)
(checkpoint_path / 'mode.json').write_text(json.dumps(mode, indent=2))
(checkpoint_path / 'model_summary.txt').write_text(model_table)
current_step = 0
training_sum = 0
waiting_sum = 0
perf_start = time_ns()
batched_train_info = defaultdict(list)
pbar = None
for epoc_num in range(1, args.epocs+1):
if mode['condition'] == 'none':
train.training_uncon_evaluate_step(
train_vis,
steps=args.test_steps,
count=args.test_count,
)
else:
test_gen.begin()
while True:
test_batch = test_gen.take()
if test_batch is None:
break
names = [i['name'] for i in test_batch['id']]
train.training_evaluate_step(
test_batch,
train_vis,
names=names,
steps=args.test_steps,
match_reflectance=True,
)
gen.begin()
if pbar is None:
pbar = tqdm(total=gen.total_samples*args.epocs)
while True:
perf_take = time_ns()
batch = gen.take()
waiting_sum += time_ns() - perf_take
if batch is None:
break
if len(batch['id']) < mode['batch_size']:
current_step += 1
continue
perf_train = time_ns()
train.training_step(batch, train_vis)
training_sum += time_ns() - perf_train
if current_step % args.log_every == 0:
train_vis.submit(
name=name,
step=current_step,
commit=True,
)
train_vis.clear()
pbar.update(len(batch['id']))
current_step += 1
perf_epoc = time_ns()
est_finish = (perf_epoc - perf_start) // 1e9 / epoc_num * args.epocs + perf_start // 1e9
training_frac = training_sum / (perf_epoc - perf_start)
waiting_frac = waiting_sum / (perf_epoc - perf_start)
print(f'Finished epoc {epoc_num} after {current_step} steps ({training_frac*100:.0f}% training, {waiting_frac*100:.0f}% waiting).')
print(f'Estimated completion {ctime(est_finish)}.')
train.save_training_checkpoint(checkpoint_path, step=train.current_step)
train.save_training_checkpoint(checkpoint_path, step=train.current_step)