-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathIsolationDist.cpp
375 lines (331 loc) · 9.82 KB
/
IsolationDist.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
// $Id: IsolationDist.cpp,v 1.5 2008/08/11 20:55:44 samn Exp $
#include "stdafx.h"
#include "IsolationDist.h"
#include "Cluster.h"
#include "nr\nr.h"
#include "Log.h"
#include <algorithm>
#include "WCMath.h"
using namespace std;
typedef double ID_T; //need double for extra precision in matrix operations
void MatMult(A2D<ID_T>& a, A2D<ID_T>& b,A2D<ID_T>& out)
{ int iRowsA = 0, iColsA = 0, iRowsB = 0 , iColsB = 0;
try
{
iRowsA = a.Rows(); if(!iRowsA) return; iColsA = a.Cols();
iRowsB = b.Rows(); if(!iRowsB) return; iColsB = b.Cols();
if(iColsA!=iRowsB)
return;
out.Init(iRowsA,iColsB); out.Fill(0.0);
int i,j,k;
for(i=0;i<iRowsA;i++)
for(j=0;j<iColsB;j++)
for(k=0;k<iColsA;k++)
out[i][j] += a[i][k] * b[k][j];
}
catch(...)
{
Write2Log("Exception in MatMult iRowsA=%d iColsA=%d iRowsB=%d iColsB=%d",iRowsA,iColsA,iRowsB,iColsB);
}
}
void MatMult(vector<vector<ID_T> >& a, vector<vector<ID_T> >& b,vector<vector<ID_T> >& out)
{ int iRowsA = 0, iColsA = 0, iRowsB = 0 , iColsB = 0;
try
{
iRowsA = a.size(); if(!iRowsA) return; iColsA = a[0].size();
iRowsB = b.size(); if(!iRowsB) return; iColsB = b[0].size();
if(iColsA!=iRowsB)
return;
out = vector<vector<ID_T> >(iRowsA,vector<ID_T>(iColsB));
int i,j,k;
for(i=0;i<iRowsA;i++)
for(j=0;j<iColsB;j++)
for(k=0;k<iColsA;k++)
out[i][j] += a[i][k] * b[k][j];
}
catch(...)
{
Write2Log("Exception in MatMult iRowsA=%d iColsA=%d iRowsB=%d iColsB=%d",iRowsA,iColsA,iRowsB,iColsB);
}
}
bool Row2Col(vector<vector<float> >& vDataIn,int iRowID,vector<vector<float> >& vDataOut,int iColID)
{
if(!vDataIn.size())
return false;
if(!vDataOut.size())
return false;
int iCols = vDataIn[0].size();
int x;
for(x=0;x<iCols;x++)
{
vDataOut[x][iColID]=vDataIn[iRowID][x];
}
return true;
}
bool Transpose(vector<vector<float> >& vDataIn,vector<vector<float> >& vDataOut)
{
int iRows = vDataIn.size();
int iCols = vDataIn[0].size();
if(!iRows || !iCols) return false;
vDataOut = vector<vector<float> >(iCols,vector<float>(iRows));
int x,y;
for(y=0;y<iRows;y++)
{ for(x=0;x<iCols;x++)
{
vDataOut[x][y]=vDataIn[y][x];
}
}
return true;
}
bool InvertMatrix(vector< vector<ID_T> >& vData)
{
ID_T d;
vector<vector<ID_T> > vTmp(vData);
int i,j;
int N = vData.size();
vector<int> indx(N);
vector<ID_T> col(vData[0].size());
if(!NR::ludcmp(vTmp,indx,d))//Decompose the matrix just once.
{ Write2Log("Couldn't invert matrix!");
return false;
}
for(j=0;j<N;j++)
{ //Find inverse by columns.
for(i=0;i<N;i++)
col[i]=0.0;
col[j]=1.0;
NR::lubksb(vTmp,indx,col);
for(i=0;i<N;i++)
vData[i][j]=col[i];
}
return true;
}
bool InvertMatrix(A2D<ID_T>& vData)
{
ID_T d;
A2D<ID_T> vTmp(vData.Rows(),vData.Cols());
int i,j;
for(i=0;i<vData.Rows();i++)
for(j=0;j<vData.Cols();j++)
vTmp[i][j]=vData[i][j];
int N = vData.Rows();
vector<int> indx(N);
vector<ID_T> col(vData.Cols());
if(!NR::ludcmp(vTmp,indx,d))//Decompose the matrix just once.
{ Write2Log("Couldn't invert matrix!");
return false;
}
for(j=0;j<N;j++)
{ //Find inverse by columns.
for(i=0;i<N;i++)
col[i]=0.0;
col[j]=1.0;
NR::lubksb(vTmp,indx,&col[0]);
for(i=0;i<N;i++)
vData[i][j]=col[i];
}
return true;
}
// Variance-covariance matrix: creation
/*
void CovarMat(const vector< vector<ID_T> >& vDataIn,int iRows,int iCols,vector< vector<ID_T> >& vCovarMat, vector<ID_T>& vMean)
{ // Create iCols * iCols covariance matrix from given iRow * iCol data matrix.
int i, j, x2, x, y, j1 , j2;
// Allocate storage for mean vector
vMean = vector<ID_T>(iCols);
vector< vector<ID_T> > vData = vDataIn; // copy it!
// Determine mean of row vectors of input data matrix
for(x=0;x<iCols;x++)
{ vMean[x] = 0.0;
for(y=0;y<iRows;y++)
{ vMean[x] += vData[y][x];
}
vMean[x] /= (ID_T)iRows;
}
vector<ID_T> vStdev(iCols);
// Center the row vectors.
for(y=0;y<iRows;y++)
{ for(x=0;x<iCols;x++)
{ vData[y][x] -= vMean[x];
}
}
// compute std-dev
const bool bCorrelMat = false;
if(bCorrelMat) for(x=0;x<iCols;x++)
{ for(y=0;y<iRows;y++)
vStdev[x]+=vData[y][x]*vData[y][x];
vStdev[x] /= (ID_T) iRows;
vStdev[x] = sqrt(vStdev[x]);
}
vCovarMat = vector<vector<ID_T> >(iCols,vector<ID_T>(iCols,0.0));
// Calculate the iCols * iCols covariance matrix.
for(j1=0;j1<iCols;j1++)
{ for(j2=0;j2<=j1;j2++)
{ vCovarMat[j1][j2]=0.0;
for(i=0;i<iRows;i++)
{ vCovarMat[j1][j2] += (vData[i][j1] * vData[i][j2]);
}
if(bCorrelMat) //correlation matrix
vCovarMat[j1][j2] /= ((ID_T) iRows * vStdev[j1] * vStdev[j2] );
else //covariance matrix
vCovarMat[j1][j2] /= (ID_T) (iRows); // -1);
vCovarMat[j2][j1]=vCovarMat[j1][j2];
}
}
}
*/
//gets the inverse of the covariance matrix for a cluster
//input vFloat has each row as a data vector, each column as a dimension, to get data vector i do vFloat[i*iCols]
//bool Clust2CovarMatInv(vector<vector< ID_T > >& vCovarMat,vector<ID_T>& vMean, vector<int>& vClustIDs,int iClustID,vector<double>& vFloat,int iRows,int iCols,int& iClustSz)
bool Clust2CovarMatInv(A2D< ID_T >& vCovarMat,vector<ID_T>& vMean, vector<int>& vClustIDs,int iClustID,vector<double>& vFloat,int iRows,int iCols,int& iClustSz)
{
int i = 0, j = 0;
iClustSz = count(vClustIDs.begin(),vClustIDs.end(),iClustID);
if(!iClustSz)
return false;
A2D<double> vClustData(iClustSz,iCols);
vClustData.Fill(0.0);
for(i=0;i<iRows;i++)
if(vClustIDs[i]==iClustID)
copy(&vFloat[i*iCols],&vFloat[i*iCols+iCols],vClustData[j++]);
Write2LogPlain("clust %d sz=%d\n",iClustID,iClustSz);
CovarMat(vClustData,iClustSz,iCols,vCovarMat,vMean);
if(false){
Write2LogPlain("clust %d covar mat %dX%d\n",iClustID,vCovarMat.Rows(),vCovarMat.Cols());
for(i=0;i<vCovarMat.Rows();i++){
for(j=0;j<vCovarMat.Cols();j++){
Write2LogPlain("%g ",vCovarMat[i][j]);
}
Write2LogPlain("\n");
}
}
#ifdef _DEBUG
A2D<ID_T> mtmp(vCovarMat);
bool b = InvertMatrix(vCovarMat);
Write2LogPlain("inv covar mat");
for(i=0;i<vCovarMat.Rows();i++){
for(j=0;j<vCovarMat.Cols();j++){
Write2LogPlain("%g ",vCovarMat[i][j]);
}
Write2LogPlain("\n");
}
A2D<ID_T> vident;
MatMult(mtmp,vCovarMat,vident);
Write2LogPlain("is this identity matrix?");
for(i=0;i<vident.Rows();i++){
for(j=0;j<vident.Cols();j++){
Write2LogPlain("%g ",vident[i][j]);
}
Write2LogPlain("\n");
}
return b;
#else
return InvertMatrix(vCovarMat);
#endif
}
ID_T DotProd(vector<ID_T>& v1,vector<ID_T>& v2)
{
int iSz = v1.size(), i = 0;
ID_T val = 0.0;
for(i=0;i<iSz;i++) val += v1[i]*v2[i];
return val;
}
//squared mahalanobis distance of pData to vMean using inverse of covariance matrix, vCovarMatInv
ID_T MahalDistSQ(double* pData,int iRowSz,vector< vector<ID_T> >& vCovarMatInv, vector<ID_T>& vMean)
{ // (x-mean)'*covar^-1*(x-mean)
vector<ID_T> vRow(iRowSz,0.0), vTmp(iRowSz,0.0);
int i, iCols = iRowSz , j = 0;
for(i=0;i<iCols;i++) //center row data vector
vRow[i]=pData[i] - vMean[i];
//multiply vector by matrix
for(i=0;i<iCols;i++)
for(j=0;j<iCols;j++)
vTmp[i] += vRow[j] * vCovarMatInv[j][i];
//dot product
return DotProd(vTmp,vRow);
}
ID_T MahalDistSQ(double* pData,int iRowSz,A2D<ID_T>& vCovarMatInv, vector<ID_T>& vMean)
{ // (x-mean)'*covar^-1*(x-mean)
vector<ID_T> vRow(iRowSz,0.0), vTmp(iRowSz,0.0);
int i, iCols = iRowSz , j = 0;
for(i=0;i<iCols;i++) //center row data vector
vRow[i]=pData[i] - vMean[i];
//multiply vector by matrix
for(i=0;i<iCols;i++)
for(j=0;j<iCols;j++)
vTmp[i] += vRow[j] * vCovarMatInv[j][i];
//dot product
return DotProd(vTmp,vRow);
}
float IsolationDist(vector<int>& vClustIDs,int iClustID,vector<double>& vFloat,int iRows,int iCols)
{
try
{
A2D<double> vCovarMatInv;
vector<ID_T> vMean;
int iClustSz = 0;
if(!Clust2CovarMatInv(vCovarMatInv,vMean,vClustIDs,iClustID,vFloat,iRows,iCols,iClustSz))
return -1.0;
if(iClustSz*2>=iRows || iClustSz<2) //need at least as many points outside of cluster as within it
return -1.0;
//Write2Log("vMean for cluster %d : ",iClustID); WriteVec2Log(vMean);
vector<ID_T> vDists;
int i;
for(i=0;i<iRows;i++)
{ if(vClustIDs[i]==iClustID)
continue;
ID_T dDist = MahalDistSQ(&vFloat[i*iCols],iCols,vCovarMatInv,vMean);
if(dDist>=0.0)
vDists.push_back(dDist);
else
Write2Log("Negative MahalDistSq = %.4f",dDist);
}
sort(vDists.begin(),vDists.end());
if(false){
Write2LogPlain("clust %d mahal distances:\n",iClustID);
for(i=0;i<vDists.size();i++){ Write2LogPlain("%g ",vDists[i]); if(i%20==0) Write2LogPlain("\n"); }
Write2LogPlain("\n");}
#ifdef _DEBUG
Write2Log("meandist=%.4f mediandist=%.4f",Avg(vDists),vDists[vDists.size()/2]);
#endif
if(iClustSz-1>=0 && iClustSz-1<vDists.size())
return vDists[iClustSz-1];
return -1.0;
}
catch(...)
{
Write2Log("Exception in IsolationDist!");
return -1.0;
}
}
float LRatio(vector<int>& vClustIDs,int iClustID,vector<double>& vFloat,int iRows,int iCols)
{
try
{
A2D<ID_T> vCovarMatInv;
vector<ID_T> vMean;
int iClustSz = 0;
if(!Clust2CovarMatInv(vCovarMatInv,vMean,vClustIDs,iClustID,vFloat,iRows,iCols,iClustSz))
return -1.0;
if(iClustSz<1 || iRows-iClustSz<1)
return -1.0;
int i;
ID_T L = 0.0;
for(i=0;i<iRows;i++)
{ if(vClustIDs[i]==iClustID)
continue;
ID_T dDist = MahalDistSQ(&vFloat[i*iCols],iCols,vCovarMatInv,vMean);
if(dDist>=0.0)
L += (1.0 - chisqCDF(dDist,iCols));
else
Write2Log("Negative MahalDistSq = %.4f",dDist);
}
Write2Log("Clust%d : L = %g , L-Ratio = %g", iClustID, L , L / iClustSz);
return L / iClustSz;
}
catch(...)
{
Write2Log("Exception in LRatio!");
return -1.0;
}
}