-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path2019-NN-Inequalities.tex
1866 lines (1587 loc) · 72.7 KB
/
2019-NN-Inequalities.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
%----------------------------------------------------------
% Filename: NN-Inequalities-2019.tex
% submitted to
%----------------------------------------------------------
\documentclass[12pt]{article}
\usepackage{epsfig} %for Postscript files
\usepackage{subfigure} %for parallel figures
\usepackage{latexsym}
%\usepackage{dsfont}
\usepackage{graphicx}
\usepackage{amsfonts}
\usepackage{mathrsfs}
\usepackage{amsfonts}
%\usepackage{extarrows}
\usepackage{amssymb,amsthm,amsmath,amscd,fancybox,graphicx}
\usepackage{amssymb,amsmath,euscript}
%\usepackage[numbers,sort&compress]{natbib}
%\usepackage{epstopdf}
\usepackage{float}
% \usepackage{refcheck}
% \usepackage{datetime}
\usepackage{color}
\usepackage{rotating,enumerate}
\usepackage{tikz}
\usetikzlibrary{positioning}
\textheight=8.75in
\textwidth=6.25in
\topmargin=-.5in
\oddsidemargin=0.0in
\evensidemargin=0.0in
\renewcommand{\baselinestretch}{1.05}
% \renewcommand{\Re}{{\rm I}\! {\rm R}}
% \renewcommand{\Cx}{{\rm I}\! {\rm C}}
\renewcommand{\Re}{{\rm I}\! {\rm R}}
\newcommand{\Cx}{\mathds{C}}
\newcommand{\KK}{\mathds{K}}
\newcommand{\rn}{\Re^n}
\newcommand{\rl}{\Re^l}
\newcommand{\s}{{\cal S}}
\newcommand{\K}{{\cal K}}
\renewcommand{\H}{{\cal H}}
\newcommand{\MV}{\mathbb{V}}
\newcommand{\MW}{\mathbb{W}}
\newcommand{\ds}{\displaystyle}
\def \gret {\succeq_{_{{\cal K}^n}} }
\def \gre {\succ_{_{{\cal K}^n}} }
\def \less {\preceq_{_{{\cal K}^n}} }
\def \les {\prec_{_{{\cal K}^n}} }
\def \rla{\rangle}
\def \lla{\langle}
\def \eps {\epsilon}
\def \veps {\varepsilon}
\def \t{\theta}
\def \sgn {{\rm sgn}}
\def \beginproof{\par\noindent {\bf Proof.}\ \ }
\def \endproof{\hskip .5cm $\Box$ \vskip .5cm}
\def\reff#1{{\rm(\ref{#1})}}
\newcommand{\IK}{{\rm I}\! {\rm K}}
\newcommand{\intK}{{\rm int} \IK}
\newcommand{\phif}{ \phi_{_{\rm F}} }
\newcommand{\phil}{ \phi_{_{\rm L}} }
\newcommand{\phifb}{ \phi_{_{\rm FB}} }
\newcommand{\psifb}{ \psi_{_{\rm FB}} }
\newcommand{\Phifb}{ \Phi_{_{\rm FB}} }
\newcommand{\Psifb}{ \Psi_{_{\rm FB}} }
\newcommand{\phinr}{ \phi_{_{\rm NR}} }
\newcommand{\psinr}{ \psi_{_{\rm NR}} }
\newcommand{\Psinr}{ \Psi_{_{\rm NR}} }
\newcommand{\phifbp}{ \phi_{_{\rm FB}}^p }
\newcommand{\phifdb}{ \phi_{_{\rm D-FB}}}
\newcommand{\phifdbp}{ \phi_{_{\rm D-FB}}^p }
\newcommand{\psifdbp}{ \psi_{_{\rm D-FB}}^p }
\newcommand{\psifbp}{ \psi_{_{\rm FB}}^p }
\newcommand{\phinrp}{ \phi_{_{\rm NR}}^p }
\newcommand{\psinrp}{ \psi_{_{\rm NR}}^p }
\newcommand{\psip}{ \psi_{p} }
\newcommand{\phip}{ \phi_{p} }
\newcommand{\Psip}{ \Psi_{p} }
\newcommand{\Phip}{ \Phi_{p} }
\newcommand{\phialpha}{ \phi_{\alpha, p} }
\newcommand{\Phialpha}{ \Phi_{\alpha, p} }
\newcommand{\psialpha}{ \psi_{\alpha, p} }
\newcommand{\Psialpha}{ \Psi_{\alpha, p} }
\newcommand{\phitheta}{ \phi_{\theta, p} }
\newcommand{\Psitheta}{ \Psi_{\theta, p} }
%--------------------------------------- begin document ---------------------------------------
\begin{document}
\newtheorem{property}{Property}[section]
\newtheorem{proposition}{Proposition}[section]
\newtheorem{append}{Appendix}[section]
\newtheorem{definition}{Definition}[section]
\newtheorem{lemma}{Lemma}[section]
\newtheorem{theorem}{Theorem}[section]
\newtheorem{example}{Example}[section]
\newtheorem{corollary}{Corollary}[section]
\newtheorem{condition}{Condition}
\newtheorem{remark}{Remark}[section]
\newtheorem{assumption}{Assumption}[section]
\newtheorem{algorithm}{Algorithm}[section]
\newtheorem{problem}{Problem}[section]
\medskip
\begin{center}
{\large \bf Neural network for solving system of inequalities
based on systematically generated smoothing functions }
\vskip1cm
B. Saheya
\footnote{E-mail: [email protected]. The author's work is supported by National
Key R\&D Program of China (Award Number: 2017YFC1405605) and
Natural science foundation of Inner Mongolia ( Award Number: 2019LH01001).} \\
College of Mathematical Science \\
Inner Mongolia Normal University \\
Hohhot 010022, Inner Mongolia, P. R. China. \\
\vskip1cm
% Tao Zhang
% \footnote{E-mail: [email protected]}\\
% College of Mathematical Science \\
% Inner Mongolia Normal University \\
% Hohhot 010022, Inner Mongolia, P. R. China. \\
%
%
% \vskip 1cm
%
%
Jein-Shan Chen
%\footnote{Corresponding author. E-mail:[email protected]. The author's work is supported by
% Ministry of Science and Technology, Taiwan.}
\\
Department of Mathematics \\
National Taiwan Normal University \\
Taipei 11677, Taiwan.
\vskip1cm
Guoqing Chen
\footnote{Corresponding author. E-mail:[email protected]. } \\
College of Mathematical Science \\
Inner Mongolia University \\
Hohhot 010021, Inner Mongolia, P. R. China. \\
\medskip
September 21, 2019
\end{center}
\medskip
\noindent
{\bf Abstract} \
In this paper, we summarize several systematic ways of constructing smoothing
functions and illustrate 11 smoothing functions accordingly for plus function
which include some new smoothing functions. Then, based on these systematically
generated smoothing functions, a unified neural network model is proposed for
solving system of inequalities. The issues regarding the equilibrium point, the
trajectory, and the stability properties of the neural network are addressed.
Moreover, numerical experiments with comparison are presented, which suggests
what kind of smoothing functions work well along with the neural network approach.
\vspace{0.8cm}
\noindent
{\bf Keywords.}\ System of inequalities, Neural network, Plus function, Smoothing method.
\medskip
%---------------------------------------------------------------------------------------------- Section 1
\section{Introduction} \label{sec1}
In this paper, we are interested in finding a solution to system of inequalities
by neural network approach. The mathematical format of the system of inequalities is given by
\begin{equation} \label{INEQUALITY}
f(x) \leq 0,
\end{equation}
where $f(x)=( f_1(x),f_2(x),\cdots, f_n(x))^\mathrm{T}$,
$ x \in \Re^{n }$ and $f_i:\Re^{n } \rightarrow \Re, (i=1,2,\cdots,n)$ are
continuous differentiable mapping.
The system of inequalities have been paid much attention due to its many applications,
including data analysis, computer-aided design problems, image reconstructions etc.
\\
The main idea of a class of important methods for solving inequalities \eqref{INEQUALITY} is to
transform them into the following nondifferentiable equations via projection function
\begin{equation}\label{plusf}
[f (x)]_+ = 0.
\end{equation}
Where $(x)_+ = (\max\{0,x_1\},\cdots, \max\{0, x_n\})^\mathrm{T}, x \in \rn$.
Iterative methods for nondifferentiable equations have been studied for decades, among these methods
smoothing methods and semismooth methods for nondifferentiable equations have been studied extensively in the last few
years. For the above nondifferentiable equation with projection operator \eqref{plusf}, some smoothing functions have been proposed by scholars. Huang \cite{HZ2008} gives a smoothing type algorithm to solving \eqref{plusf}, a smoothing Newton method was designed by Fan \cite{fy18}, based on a new family smoothing function a nonmonotone Newton method was proposed by Chen \cite{Chen2016} for equalities and inequalities.
Basically, the main ideas for the aforementioned approaches can be categorized
as below. The first one is to recast the system of inequalities (\ref{INEQUALITY}) as a system of nonsmooth equations
and then tackle with the nonsmooth equations by using nonsmooth Newton algorithm \cite{Qi93} or
other subgradient approaches. The Second
one is transform it to smoothing equations and applying smoothing Newton algorithm \cite{QSZ00}.
In this paper, neural network method is used to solve the system of inequalities (\ref{INEQUALITY}),
which is not found in other literatures.
\\
Now, we elaborate more about the idea of neural network approach. For many
practical applications, the real-time solutions of optimization problems are
mostly required. One possible and very promising approach to solving the real-time
optimization problem is to apply artificial neural networks. The neural networks
can be implemented using integrated circuits. Neural networks for optimization
were first introduced in the 1980s by Hopfield and Tank \cite{HT85, TH86}. Since
then, significant research results have been achieved for various optimization
problems, including linear programming \cite{ZUH95}, quadratic programming
\cite{BP93}, linear complementarity problems \cite{LQ99}, nonlinear complementarity
problem \cite{LQQ01} and nonlinear programming \cite{CU93}. In general, the
essence of neural network approach is to construct a nonnegative energy function
and establish a dynamic system that represents an artificial neural network.
A first order differential equation represents the dynamic system. Furthermore,
it is expected that the dynamic system will converge to its static state (or an
equilibrium point), which corresponds to the solution for the underlying
optimization problem, starting from an initial point.
\\
In this paper, we present systematical
ways about how to construct smoothing functions for system of inequalities \eqref{INEQUALITY}
and illustrate 11 smoothing functions accordingly. After that, we design a gradient descent
neural network model by using these 11 different smoothing functions. We not
only discuss the stability of the neural networks, but also give numerical comparison
for these smoothing functions. The innovation of this paper is twofold.
Firstly, some new smoothing functions of projection functions are constructed by summing up
the smoothing methods. Secondly, the nonlinear system of inequalities is solved by neural network
approach. The third is numerical comparison, which suggest what kind of smoothing functions work well
along with the neural network approach for system of inequalities.
\\
%---------------------------------------------------------------------------------------------- Section 2
\section{Preliminaries} \label{sec2}
By looking into the mathematical format of the \eqref{plusf}, it is clear that the plus
function $(x)_+$ is the key component. Indeed, the plus function
also plays an important role in a lot of applications, like machine learning and
image processing, etc. In particular, the plus
function $(x)_+$ is not
differentiable at $x=0$, which causes limits in analysis and application. To conquer
this hurdle, researchers consider smoothing methods and construct smoothing functions
for it.
The definition of smoothing function of plus function $(x)_+$ is given by following definition.
%----------------------------------------------------------------------------------- Definition 2.1
\begin{definition}
If $\phi(\mu, \cdot):\Re \to \Re$ with respect to
$(\alpha)_+$ satisfying
\begin{equation*} \label{condition}
\lim_{\mu \downarrow 0} \phi(\mu,\alpha) =(\alpha)_{+},
\end{equation*}
for all $\alpha\in \Re$. Then call $\phi(\mu, \cdot)$ a smoothing function of plus function $ (x)_+$.
\end{definition}
The smoothing technique has been exploited to solving problems in
machine learning, statistics, cone programming. These successful cases motivate a systematic
study of the smoothing approach. How to generate new smoothing functions?
What is a common property of smoothing functions of plus function ?
We summarize all possible ways to construct smoothing functions for plus
function $(x)_+$
as below. For more details, please refer to \cite{BM12, CM96, KR92, Nesterov05, QD02, VOY15}.
\\
\noindent
{\bf (1) Smoothing by the convex conjugate}
\medskip
Let $X$ be a real topological vector space, and let $X^{*}$ be the dual
space to $X$. For any function $f: {\rm dom} f \to \Re$, its convex conjugate
$f^*: ({\rm dom}f)^* \to \Re$ is defined in terms of the supremum by
\[
f^*(y) := \sup_{x \in {\rm dom} f} \left \{x^T y - f(x) \right \}.
\]
In light of this, one can build up smooth approximation of $f$, denoted by $f_{\mu}$,
by adding strongly convex component to its dual $g:=f^*$, namely,
\[
f_{\mu}(x) = \sup_{z\in {\rm dom} g} \left \{z^T x - g(x) - \mu d(z) \right \}
= (g+\mu d)^*(x),
\]
for some $1$-strongly convex and continuous function $d(\cdot)$ (called proximity
function). Here, $d(\cdot)$ is $1$-strongly convex which satisfies
\[
d( (1-t)x + t y) \leq (1-t) d(x) + t d(y) - \frac{1}{2} t(1-t) \|x-y\|^2,
\]
for all $x, y$ and $t \in (0,1)$. Note that
\(
(x)_+ = \sup_{0 \leq z \leq 1 }zx.
\)
If we take $d(z):=z^2/2$, then the constructed smoothing function via conjugation
leads to
\begin{equation}\label{phi1}
\phi_1(\mu, x)=\sup_{0 \leq z \leq 1}\left\{ zx-\frac{\mu}{2}z^2 \right \}
= \left\{
\begin{array}{cl}
x -\ds \frac{\mu}{2}, & x \geq \mu\\
\frac{x^2}{2\mu}, & {\rm if} \ \ 0 \leq x \leq \mu, \\
0, & x <0. \\
\end{array}
\right.
\end{equation}
Which is the Pinar-Zenios function \cite{PZ1995}.
Alternatively, choosing $d(y):=1-\sqrt{1-y^2}$
gives another smoothing function:
\begin{equation}\label{phi2}
\phi_2(\mu, x) =\left\{
\begin{array}{cl}
\sqrt{x^2+\mu^2}-\mu, & x > 0\\
0, & x \leq 0.
\end{array}
\right.
\end{equation}
\\
\noindent
{\bf (2) The Moreau proximal smoothing}
\medskip
Suppose that $\mathbb{E}$ is an Euclidean space and $f:\mathbb{E} \to (-\infty,\infty]$
is a closed and proper convex function. One natural tool for generating an approximate
smoothing function is through the use of the so-called proximal map introduced by Moreau
\cite{Mor65}. The Moreau proximal approximation yields a family of approximations
$\{ f^{\rm px}_{\mu}\}_{\mu >0}$ as below:
\begin{equation*}\label{moreau}
f^{\rm px}_{\mu}(x)=\inf_{u\in \mathbb{E}} \left\{ f(u)+\frac{1}{2\mu}\|u-x\|^2 \right\}.
\end{equation*}
It is known that the Moreau proximal approximation $f^{\rm px}_{\mu}(x)$ is convex
continuous, finite-valued, and differentiable with gradient $\nabla f^{\rm px}_{\mu}$
which is Lipschitz continuous with constant $\frac{1}{\mu}$, see \cite{Mor65}.
When applying the Moreau proximal smoothing way \cite{BM12} to construct the smoothing function
for the plus function $(x)_+$, we can obtain the Pinar-Zenios function\cite{PZ1995} $\phi_1(\mu, x)$
defined by \eqref{phi1}.
\noindent
{\bf (3) Nesterov's smoothing}
\medskip
There is a class of nonsmooth convex functions considered in \cite{Nesterov05},
which is given by
\[
q(x)=\max\{ \lla u,Ax \rla - \phi(u) \, | \, u \in Q\}, \quad x \in \mathbb{E},
\]
where $\mathbb{E}$, $V$ are finite dimensional vector spaces, $Q \subseteq V^*$
is compact and convex, $\phi$ is a continuous convex function on $Q$, and
$A :\mathbb{E} \to V $ is a linear map.
The smooth approximation of $q$ suggested in \cite{Nesterov05} is described by
the convex function
\begin{equation*}\label{nesterov}
q_\mu(x) =\max \{ \lla u, Ax \rla -\phi(u)-\mu d(u) \, | \, u\in Q\},
\quad x \in \mathbb{E},
\end{equation*}
where $d(\cdot)$ is a prox-function for $Q$. It was proved in
\cite[Theorem 1]{Nesterov05} that the convex function $q_\mu(x)$ is $C^{1,1}(\mathbb{E})$.
More specifically, its gradient mapping is Lipschitz continuous with constant
$L_\mu= \ds \frac{\|A\|^2}{\sigma \mu}$ and the gradient is described by
$\nabla q_\mu(x)= A u_\mu(x)$, where $u_\mu(x)$ is the unique minimizer of \eqref{nesterov}.
\\
For the absolute value function $q(x) = (x)_+ $ with $x\in \Re^1$. Let $A=1$,
$b=0$, $\mathbb{E}=\Re^1$, $Q=\{u\in \Re^1 \, | \, 0 \leq u \leq 1\}$ and taking
$d(u):=\frac{1}{2}u^2$. Then, we have
\begin{eqnarray*}
q_\mu(x)
&=& \max_{u \in Q} \left\{ \langle Ax-b,u \rangle - \mu d(u)\, | \ \right \}
= \max_{u \in Q} \left\{ xu - \frac{\mu}{2}u^2 \right \}
= \left\{
\begin{array}{cl}
x -\frac{\mu}{2}, & {\rm if} \ x > \mu, \\
\frac{x^2}{2\mu}, & {\rm if} \ 0 \leq x \leq \mu, \\
0, & {\rm if} \ x < 0. \\
\end{array}
\right.
\end{eqnarray*}
As we see, it also yields the Pinar-Zenios function \cite{PZ1995} $\phi_1(\mu, x)$ defined
by \eqref{phi1}.
\\
\noindent
{\bf (4) The infimal-convolution smoothing technique}
\medskip
Suppose that $\mathbb{E}$ is a finite vector space and
$f, g:\mathbb{E} \to (-\infty,\infty]$. The infimal-convolution of $f$ and $g$,
$f \, \Box \, g : \mathbb{E} \to [-\infty, +\infty]$ is defined by
\[
(f \, \Box \, g)(x) = \inf_{y \in \mathbb{E}} \left \{ f(y)+g(x-y) \right \}.
\]
In light of the concept of infimal convolution, one can also construct smoothing
approximation functions. More specifically, we consider
$f : \mathbb{E} \to (-\infty,\infty]$ which is a closed proper convex
function and let $\omega : \mathbb{E} \to \mathbb{R} $ be a $C^{1,1}$
convex function with Lipschitz gradient constant $1/\sigma$ ($\sigma> 0$).
Suppose that for any $\mu >0$ and any $x \in \mathbb{E}$, the following
infimal convolution is finite:
\begin{equation*} \label{inf-cov}
f^{\rm ic}_\mu(x)
= \inf_{u\in \mathbb{E}} \left\{ f(u)+\mu \omega(\frac{x-u}{\mu}) \right \}
= (f \, \Box \, \omega_\mu) (x),
\end{equation*}
where $\omega_\mu(\cdot)=\mu\omega(\frac{\cdot}{\mu})$.
Then, $f^{\rm ic}_\mu$ is called the infimal-convolution $\mu$-smooth approximation
of $f$. In particular, when $\mu\in \Re_{++}$ and $p\in (1,+\infty)$, the
infimal convolution of a convex function and a power of the norm function is
obtained as below:
\begin{equation*}
f \, \Box \, \left( \frac{1}{\mu p}\|\cdot\|^p \right)
= \inf_{u\in \mathbb{E}} \left\{ f(u)+ (\frac{1}{\mu p}\|x-u\|^p) \right \}.
\end{equation*}
\noindent
For the plus function, it can be verified that
$f_\mu (x)=((\cdot)_+) \, \Box \, \left( \frac{1}{\mu *p}|\cdot|^p \right)$ is the
smoothing function of order $p$, i.e.,
\begin{equation}\label{phi-p}
\phi^{(p)} (\mu, x)= f_\mu (x) = \left\{
\begin{array}{cll}
x-\frac{p-1}{p}\mu^{\frac{1}{p-1}}, & {\rm if} & x > \mu^{\frac{1}{p-1}}, \\
\frac{x^p}{\mu p}, & {\rm if} & 0 \leq x \leq \mu^{\frac{1}{p-1}},\\
0, & {\rm if} & x<0.
\end{array}
\right.
\end{equation}
Note that when $p = 2$ in the above expression \eqref{phi-p}, the smoothing function
of order $p$ reduces to the Pinar-Zenios function $\phi_1(\mu, x)$ as shown in \eqref{phi1}.
Figure \ref{p-order-smoothr} depicts the smoothing function of order $p$ with various value
of $p$. It can be observed from the Figure \ref{p-order-smoothr} that the smoothing curve is
further and further away from plus function as $p$ increases.
To the contrast, plugging $p = 2$ into infimal-convolution formula
yields the Moreau approximation \eqref{moreau}. For more details
about infimal-convolution and its induces approximation functions, please refer to
\cite{BM12, BC2016}.
\begin{figure}
\centering
\includegraphics[scale=0.6]{p-oder-smooth-function.pdf}\\
\caption{ $(x)_+$ and smoothing function of order $p$ ($\mu=0.3$).}\label{p-order-smoothr}
\end{figure}
\noindent
{\bf (5) The convolution smoothing technique}
\medskip
The smoothing approximation via convolution for the plus function
is a popular way, which can be found in \cite{CM96, KR92, QD02, VOY15}. Its
construction idea is described as follows. First, one constructs a smoothing
approximation for the plus function $(x)_+ = \max\{0,x\}$. To this end, we
consider the piecewise continuous function $d(x)$ with finite number of pieces
which is a density (kernel) function, that is, it satisfies
\[
d(x)\geq 0 \quad {\rm and} \quad \int_{-\infty}^{+\infty}d(x)dx = 1.
\]
Next, define $\hat{s}(\mu, x) := \frac{1}{\mu}d\left(\frac{x}{\mu}\right)$,
where $\mu$ is a positive parameter. Suppose that
$\int_{-\infty}^{+\infty}\left|x\right|d(x)dx < +\infty$, then a smoothing
approximation (denoted by $\hat{p}(\mu, x)$) for $(x)_+$ is obtained as below:
\begin{equation*}
\hat{p}(\mu, x) = \int_{-\infty}^{+\infty}(x-s)_+\hat{s}(\mu, s)ds
= \int_{-\infty}^{x}(x-s)\hat{s}(\mu, s)ds.
\end{equation*}
There are some well-known kernel functions
\begin{eqnarray*}
d_1(x) & =&
\left\{
\begin{array}{clc}
1 & \rm{if} \; 0\leq x \leq 1,\\
0 & \rm{otherwise}.
\end{array}
\right.
d_2(x) = \frac{e^{-x}}{(1+e^{-x})^2}, \\
d_3(x) & =&
\left\{
\begin{array}{clc}
1 & \rm{if} \; -\frac{1}{2}\leq x \leq \frac{1}{2},\\
0 & \rm{otherwise},
\end{array}
\right.
d_4(x) = \frac{2}{(x^2 + 4)^{\frac{3}{2}}}, \\
\end{eqnarray*}
From $d_1(x)$ we can also derive Pinar-Zenios function $\phi_1$ defined by \eqref{phi1}.
Based on kernel functions $d_2(x), d_3(x), d_4(x)$ , we obtain following smoothing functions for the plus function \cite{CM96, QD02}:
\begin{eqnarray}
{\phi}_3(\mu, x) &=& x + \mu
\log \begin{pmatrix}
1 + e^{-\frac{x}{\mu}} \\
\end{pmatrix}. \label{phi3} \\
{\phi}_4(\mu, x) &=&
\left\{
\begin{array}{cll}
x & {\rm if} & x \geq \frac{\mu}{2}, \\
\frac{1}{2\mu}\left(x + \frac{\mu}{2}\right)^2 & {\rm if} & -\frac{\mu}{2} < x < \frac{\mu}{2}, \\
0 & {\rm if} & x\leq -\frac{\mu}{2}.
\end{array}
\right. \label{phi4} \\
{\phi}_5(\mu, x) &=& \frac{\sqrt{4\mu^2 + x^2} + x}{2}. \label{phi5}
\end{eqnarray}
The function $\phi_3$ is called the neural networks smooth function \cite{CM96} ,
the function $\phi_4$ is called the Zang smooth function \cite{CM96,Zang1980} and
the function $\phi_5$ is called the Chen-Harker-Kanzow-Smale smooth function \cite{CM96, CH1993}.
\noindent
{\bf (6) Smoothing by epigraph}
\medskip
We consider the maximum function
\[
f(x) = \max_{i \in I}f_i(x),
\]
where $f_i(x)\in C^k(\rn)$. The maximum function $f$ is in general not differentiable.
One kind of approach is replace the minimization of $f $ by means of the minimization
of the linear function $y$ on the epigraph of $f$. Therefore, the nonsmooth unconstrained
minimization problem is replaced by a smooth, but constrained minimization. A barrier
(interior approximation) for the $epi(f)$ constrained is constructed by
\[
\prod_{i\in I}\left ( y - f_i(x)\right ) \geq \mu, \ (\mu > 0),
\]
or, equivalently form
\[
\sum_{i\in I}\log \left ( y - f_i(x)\right ) \geq \log(\mu), \ (\mu > 0).
\]
From this we get a function $f_\mu$ whose graph lies in the interior of $epi(f)$
and which is defined by
\[
\sum_{i\in I}\log \left ( y - f_i(x)\right ) = \log(\mu).
\]
It is shown that $f_\mu$ is a $C^k$-function and have some good
property \cite{GuerraVazquez2001}.
For function $(x)_+ = \max(0,x)$, we get the smoothing function
\begin{equation*}
f_\mu = \frac{x}{2} + \sqrt{\mu + \frac{x^2}{4}}.
\end{equation*}
Which is the smoothing function $\phi_5(\mu,x)$ defined by \eqref{phi5}.
\noindent
{\bf (7) Indirect smoothing technique}
\medskip
On the other hand, we can smooth out the plus function by looking at
other smoothing functions in relation to the plus function. For
example, we can use the relationship between the absolute value
function and the plus function,i.e.,$(x)_+ = \frac{x + |x|}{2}$.
In reference \cite{saheya2019}, eight smoothing functions of
absolute value functions are given. From this we can get eight
smoothing functions for plus function. In addition to the
functions or very similar functions that we have constructed
in the previous sections, there are several new functions
as following
\begin{eqnarray}
\phi_6(\mu, x) &=& \frac{1}{2}(x + \mu \log \left( \cosh \left( \frac{x}{\mu} \right) \right)). \label{phi6}\\
\phi_7(\mu, x) &=& \frac{1}{2}(x + \mu \left [ \log \left( 1 + e^{-\frac{x}{\mu}} \right) +
\log \left( 1 + e^\frac{x}{\mu} \right) \right] ). \label{phi7} \\
\phi_8(\mu, x)
&=& \left \{
\begin{array}{cll}
x& {\rm if} & x \geq \frac{\mu}{2}, \\
\frac{1}{2}(x + \frac{x^2}{\mu} + \frac{\mu}{4}) & {\rm if} & -\frac{\mu}{2} < x < \frac{\mu}{2}, \\
0 & {\rm if} & x \leq -\frac{\mu}{2}.
\end{array}
\right. \label{phi8} \\
\phi_9(\mu, x) &=&
\left\{
\begin{array}{cll}
x& {\rm if} & x > \mu, \\
\frac{1}{2}(x -\frac{x^4}{8\mu^3} + \frac{3x^2}{4\mu} + \frac{3\mu}{8} )& {\rm if} & -\mu \leq x \leq \mu, \\
0 & {\rm if} & x < -\mu.
\end{array}
\right. \label{phi9} \\
\phi_{10}(\mu, x) &=& \frac{1}{2}(x + x \, {\rm erf} \left(\frac{x}{\sqrt{2}\mu}\right)
+ \sqrt{\frac{2}{\pi}}\mu e^{-\frac{x^2}{2\mu^2}}). \label{phi10}
\end{eqnarray}
\begin{figure}
\centering
\includegraphics[scale=0.6]{All-Smooth.pdf}\\
\caption{The graphs of $(x)_+$ and the smoothing functions $\phi_i, i=1,\cdots,10$
($\mu=0.4$).}\label{All-Smooth}
\end{figure}
To sum up, we have 11 smoothing functions in total through the above
constructions. Figure \ref{All-Smooth} depicts the graphs of all the
aforementioned smoothing functions $\phi_i$, $i=1,\cdots,10$, $p$-order
smoothing function $\phi^{(p)}, (p=1.5)$ and the plus function. Not only
from the geometric view, $\phi_i$, $i=1,\cdots,10$ and $\phi^{(p)}$ are clearly smoothing
functions of $(x)_+$, it can be also verified theoretically
in Proposition \ref{Proposition 2.1}.
\medskip
%---------------------------------------------------------------------------------- Proposition 2.1
\begin{proposition} \label{approximationBound}
Let $\phi_i:\Re^2 \to \Re$ for $i=1,\ldots, 10$, $\phi^{(p)}$ be defined as in
\eqref{phi1}--\eqref{phi10}, respectively and $\mu >0$ .
Then, we have
\begin{description}
\item[(i)] $\phi_{i}$ is continuously differentiable at
$(\mu, x) \in \Re_{++} \times \Re$;
\item[(ii)] $\ds \lim_{\mu \downarrow 0} \phi_{i} (\mu, x)=(x)_+$.
\item[(iii)] $ \frac{\partial \phi_i(\mu,t)}{t} \geq 0, \forall \mu >0.$
% \item[(iv)] If $t_1 \leq t_2$, then $\phi(\mu, t_1) \leq \phi(\mu, t_2)$.
\item[(iv)] If $\phi \in \{\phi_3,\phi_4, \phi_5, \phi_7, \phi_8, \phi_9, \phi_{10} \}$,
then $\phi(\mu,t) > (x)_+$, and if $\phi \in \{\phi_1, \phi_2, \phi_6, \phi^{(p)}\}$,
then $\phi(\mu,t) < (x)_+$.
\item[(v)] For $0< \mu_1 < \mu_2$, If $\phi \in \{\phi_3,\phi_4, \phi_5, \phi_7,
\phi_8, \phi_9, \phi_{10} \}$, then $\phi(\mu_1,t) < \phi(\mu_2,t)$, and
if $\phi \in \{\phi_1, \phi_2, \phi_6, \phi^{(p)}\}$, then $\phi(\mu_1,t) > \phi(\mu_2,t)$.
\item[(vi)] the following inequalities are true
\begin{eqnarray*}
0 &\leq & \max \{0,x\} -\phi_1(\mu,x) \leq \frac{\mu}{2},\\
0 &\leq & \max \{0,x\} -\phi_2(\mu,x) \leq \mu,\\
0 &\leq & \phi_3(\mu,x)-\max \{0,x\} \leq \mu \ln 2,\\
0 &\leq & \phi_4(\mu,x)-\max \{0,x\} \leq \frac{\mu }{8},\\
0 &\leq & \phi_5(\mu,x)-\max \{0,x\} \leq \mu, \\
0 &\leq & \max \{0,x\} -\phi_6(\mu,x) \leq \frac{\mu}{2} \ln 2,\\
0 &\leq & \phi_7(\mu,x)-\max \{0,x\} \leq \mu \ln 2, \\
0 &\leq & \phi_8(\mu,x)-\max \{0,x\} \leq \frac{\mu}{8}, \\
0 &\leq & \phi_9(\mu,x)-\max \{0,x\} \leq \frac{3\mu}{16}, \\
0 &\leq & \phi_{10}(\mu,x)-\max \{0,x\} \leq \frac{\mu}{\sqrt{2\pi}}, \\
0 &\leq & \max \{0,x\} -\phi^{(p)}(\mu,x) \leq \frac{p-1}{p}\mu^{\frac{1}{p-1}}.
\end{eqnarray*}
\end{description}
\end{proposition}
\beginproof
The proof is straightforward and we omit it.
\endproof
From the Proposition \ref{approximationBound} and Figure \ref{All-Smooth}, we see that the local behavior of all 11 smoothing functions can be described as follow.
\begin{equation}\label{relation-phi}
\phi_2 \leq \phi_1 \leq \phi_6 \leq \phi^{(p)} \leq (x)_+ \leq \phi_4 \approx \phi_8 \leq \phi_9 \leq \phi_{10} \leq \phi_7 \approx
\phi_3 \leq \phi_5.
\end{equation}
We can divide the above functions into three categories. The first class is approximated
by the Plus function from above, and in this class we have the smoothing functions
$\phi_4 , \phi_8 , \phi_9 , \phi_{10} , \phi_7 , \phi_3 , \phi_5$. The second type
approximates the plus function from below and has the same value as the plus function when $x$ is less than $0$.
This class contains smoothing function $ \phi_2 , \phi_1 , \phi^{(p)}$. The third class include
only function $\phi_6$, which is characterized by an approximation from below but coincidences with only one zero point of plus function.
\medskip
Next, we recall some materials about first order differential equations (ODE):
\begin{equation} \label{ODE}
\dot{w}(t)=H(w(t)),\ w(t_0)=w_0\in \Re^n,
\end{equation}
where $H: \Re^n \to \Re^n$ is a mapping. We also introduce three kinds
of stability that will be discussed later. These materials can be
found in usual ODE textbooks.
\medskip
%----------------------------------------------------------------------------------- Definition 2.1
\begin{definition}
A point $w^*=w(t^*)$ is called an equilibrium point or a steady
state of the dynamic system (\ref{ODE}) if $H(w^*)=0.$ If there is
a neighborhood $\Omega^*\subseteq \Re^n$ of $w^*$ such that
$H(w^*)=0$ and $H(w)\neq 0$ $\forall w\in \Omega^*\setminus\{w^*\}$, then
$w^*$ is called an isolated equilibrium point.
\end{definition}
\medskip
%---------------------------------------------------------------------------------------- Lemma 2.1
\begin{lemma} \label{wdomaim}
Assume that $H: \Re^n \to \Re^n$ is a continuous mapping. Then, for any
$t_0>0$ and $w_0\in \Re^n$, there exists a local solution $w(t)$ for
(\ref{ODE}) with $t\in [t_0,\tau)$ for some $\tau>t_0.$ If, in
addition, $H$ is locally Lipschitz continuous at $x_0$, then the
solution is unique; if $H$ is Lipschitz continuous in $\Re^n$, then
$\tau$ can be extended to $\infty$.
\end{lemma}
If a local solution defined on $[t_0,\tau)$ cannot be extended to a
local solution on a larger interval $[t_0,\tau_1)$, $\tau_1>\tau,$
then it is called a maximal solution, and the interval $[t_0,\tau)$
is the maximal interval of existence. Clearly, any local solution
has an extension to a maximal one. We denote $[t_0, \tau(w_0))$ by
the maximal interval of existence associated with $w_0$.
\medskip
%---------------------------------------------------------------------------------------- Lemma 2.2
\begin{lemma}\label{limmaxsolution}
Assume that $H: \Re^n \to \Re^n$ is continuous. If $w(t)$ with
$t\in [t_0, \tau(w_0))$ is a maximal solution and $\tau(w_0)<\infty$,
then $\ds \lim_{t\uparrow\tau(w_0)}\|w(t)\|=\infty.$
\end{lemma}
\medskip
%----------------------------------------------------------------------------------- Definition 2.2
\begin{definition} (Stability in the sense of Lyapunov)
Let $w(t)$ be a solution for (\ref{ODE}). An isolated equilibrium point
$w^*$ is Lyapunov stable if for any $w_0=w(t_0)$ and any $\varepsilon >0$,
there exists a $\delta>0$ such that $\|w(t)-w^*\|<\varepsilon$ for all
$t\geq t_0$ and $\|w(t_0)-w^*\|<\delta$.
\end{definition}
\medskip
%----------------------------------------------------------------------------------- Definition 2.3
\begin{definition} (Asymptotic Stability)
An isolated equilibrium point $w^*$ is said to be asymptotic stable
if in addition to being Lyapunov stable, it has the property that
$w(t)\to w^*$ as $t\to \infty$ for all $\|w(t_0)-w^*\| < \delta$.
\end{definition}
\medskip
%------------------------------------------------------------------------------- Definition 2.4
\begin{definition} (Lyapunov function)
Let $\Omega \subseteq \Re^n$ be an open neighborhood of $\bar{w}$.
A continuously differentiable function $V:\Re^n\to \Re$ is said to
be a Lyapunov function at the state $\bar{w}$ over the set $\Omega$
for equation (\ref{ODE}) if
\begin{equation} \label{Lfunction}
\left\{
\begin{array}{ll}
V(\bar{w})=0,\ V(w)>0,\ \forall w\in\Omega\setminus\{\bar{w}\}, \\
\dot{V}(w)\leq 0,\ \forall w\in\Omega\setminus\{\bar{w}\}.
\end{array}\right.
\end{equation}
\end{definition}
\medskip
%----------------------------------------------------------------------------------------- Lemma 2.3
\begin{lemma} \label{stablecondition}
\begin{description}
\item[(a)] An isolated equilibrium point $w^*$ is Lyapunov stable
if there exists a Lyapunov function over some
neighborhood $\Omega^*$ of $w^*$.
\item[(b)] An isolated equilibrium point $w^*$ is asymptotically stable
if there exists a Lyapunov function over some
neighborhood $\Omega^*$ of $w^*$ such that $\dot{V}(w)<0,\
\forall w\in\Omega^*\setminus \{w^*\}$.
\end{description}
\end{lemma}
\medskip
%----------------------------------------------------------------------------------- Definition 2.4
\begin{definition} (Exponential Stability)
An isolated equilibrium point $w^*$ is exponentially stable if there
exists a $\delta>0$ such that arbitrary point $w(t)$ of (\ref{ODE})
with the initial condition $w(t_0)=w_0$ and $\|w(t_0)-w^*\|<\delta$
is well defined on $[0,+\infty)$ and satisfies
\[
\|w(t)-w^*\|\leq ce^{-\omega t}\|w(t_0)-w^*\|,\quad \forall t\geq
t_0,
\]
where $c>0$ and $\omega>0$ are constants independent of the initial
point.
\end{definition}
\medskip
%------------------------------------------------------------------------------------------------------- Section 3
\section{Smoothing neural network model for system of inequalities}
This section utilizes the smoothing function constructed in the
previous section to construct a smooth neural network model for
solving the system of inequalities \eqref{INEQUALITY}.
Let,
\begin{equation}\label{Psi}
\Psi(x) = \frac{1}{2}\| [ f(x) ]_+ \|^2
\end{equation}
Then the system of inequalities \eqref{INEQUALITY}
can be transformed into an unconstrained optimization
problem.
\begin{equation}\label{minPsi}
\min_{x\in \rn} \Psi(x).
\end{equation}
In order to overcome the nonsmoothness of the problem \eqref{minPsi},
smoothing technique is adopted.
For $\phi \in \{\phi_i,\phi^{(p)}\}$, $i=1,\cdots,10$, defined
by \eqref{phi1} -- \eqref{phi10},
we defined function $H:R^{n+1} \rightarrow R^{n+1}$ by
\[
H(\mu,x)=\left[
\begin{array}{c}
\mu, \\
\Phi(\mu,f(x))
\end{array}
\right]=
\left[
\begin{array}{c}
\mu, \\
\phi(\mu,f_1(x))\\
\vdots \\
\phi(\mu,f_n(x))
\end{array}
\right]
\]
Let,
\begin{equation}\label{Psimu}
\Psi_\mu(\mu,x) = \mu^2+\sum_{k=1}^{m}(\phi\left(\mu,f_k(x))\right)^2
=\frac{1}{2}\| H(\mu, x ) \|^2 ,
\end{equation}
Then, according to the above function $\Psi_\mu(\mu,x)$, the following
unconstrained optimization problem is defined
\begin{equation}\label{minPsimu}
\min_{x\in \rn} \Psi_\mu(\mu,x).
\end{equation}
In other hand, we can think of $\Psi_\mu(\mu,x)$ and unconstrained
problem \eqref{minPsimu} as being transformed from the following system of inequalities
\begin{equation*}
\left\{
\begin{array}{c}
f(x) \leq 0, \\
-\mu \leq 0.
\end{array}
\right.
\end{equation*}
The next theorem gives the relation beteween problem \eqref{minPsi} and
problem \eqref{minPsimu}.
We need following Lemma. In the following analysis, only smooth
function $\phi = \phi_1$ is used, which is similar when other
functions $\phi_i$, $i=1,\cdots,10$ and $\phi^{(p)}$ are used.
\begin{lemma}\label{lemma-bound}
For all $x \in \rn$, $\mu \geq 0$, we have
\begin{equation}
\mu^2 \leq \Psi(x) - \Psi_\mu(\mu,x) \leq \mu^2 +\frac{n\mu}{2}.
\end{equation}
\end{lemma}
\begin{proof}
Just give the proof in the case of smoothing function $\phi = \phi_1$,
the cases for other ten smoothing functions are similar.
From Proposition \ref{approximationBound}, we have
$$
0 \leq \max\{0,x\} - \phi(\mu,x) \leq \frac{\mu}{2},
$$
Then,
$$
0 \leq [f(x)]_+ - \phi(\mu,f(x)) \leq \frac{\mu}{2}.
$$
Sum of both sides and add $\mu^2$
$$
\mu^2 \leq \Psi(f(x)) - \Psi_\mu(\mu,f(x) \leq \mu^2 +\frac{n\mu}{2}.
$$
\end{proof}
\begin{theorem}\label{theorem31}
Let the sequence $\mu_k \rightarrow 0$, $\mu_k \geq 0$, and $x_k$ is an
optimal solution of problem \eqref{minPsimu}, Assume that $x^*$ be an
accumulating point of the sequence ${x_k}$. Then
$x^*$ be an optimal solution to problem \eqref{minPsi},
\end{theorem}
\begin{proof}
From Lemma \ref{lemma-bound}, for every $k$, we have
$$
\mu_k^2 \leq \Psi(f(x)) - \Psi_\mu(\mu_k,f(x) \leq \mu_k^2 +\frac{n\mu_k}{2}.
$$
Then,
$$
\min_{x\in \rn} \{ \mu_k^2 \} \leq \min_{x\in \rn} \{ \Psi(f(x)) - x_k \} \leq \min_{x\in \rn} \{ \mu_k^2 +\frac{n\mu_k}{2} \}.
$$
Let's take $k \rightarrow \infty$, we have
$$
\lim_{k \rightarrow \infty}\Psi(f(x))= \lim_{k \rightarrow \infty}x_k = x^*.
$$
\end{proof}
\begin{theorem} \label{theorem32}
Let $x^*$ and $\bar{x}$ are the optimal solutions of problem \eqref{minPsi}
and \eqref{minPsimu}, respectively.
Then
$$
0 \leq \Psi(f(x^*)) - \Psi_\mu(\mu,f(\bar{x})) \leq \mu\frac{n+2\mu}{2}.
$$
\end{theorem}
\begin{proof}
From Lemma \ref{lemma-bound} and $x^*$ and $\bar{x}$ are the optimal
solutions of problem \eqref{minPsi} and \eqref{minPsimu}, we have
\[
\mu_k^2 \leq \Psi(f(x^*)) - \Psi_\mu(\mu_k,f(x^*)),
\]
\[
\Psi_\mu(\mu_k,f(\bar{x}) \leq \Psi_\mu(\mu_k,f(x^*)).
\]
Then,
\[
\mu_k^2 + \Psi_\mu(\mu_k,f(\bar{x})) \leq \Psi(f(x^*))
\]
That is
\begin{equation}\label{theoremInqua}
\Psi_\mu(\mu_k,f(\bar{x})) + \Psi(f(x^*)) \leq 0.
\end{equation}
From Lemma \ref{lemma-bound}, $x^*$ and $\bar{x}$ be an optimal
solutions of problem \eqref{minPsi}, we have
\[
\Psi(x^*) \leq \Psi(\bar{x}) \leq \Psi(\mu,\bar{x}) + \mu\frac{n+2\mu}{2},
\]
Therefor, we obtain
\begin{equation}\label{theoremIqua2}
\Psi(x^*) - \Psi(\mu, x^*) \leq \mu\frac{n+2\mu}{2}
\end{equation}
Since \eqref{theoremInqua},\eqref{theoremIqua2}, there have
\[
0 \leq \Psi(x^*) - \Psi(\mu, x^*) \leq \mu\frac{n+2\mu}{2}.
\]
\end{proof}
The Theorem \ref{theorem31} and Theorem \ref{theorem32} show that
the solution to smooth problem \eqref{minPsimu} is also optimal
solution to the nonsmooth problem \eqref{minPsi} in small error.
In order to describe the relationship between the optimal solution
to \eqref{minPsimu} and a feasible solution of the original system of
inequalities \eqref{INEQUALITY}, we need to add extra conditions to
the function $f(s)$ of problem \eqref{INEQUALITY}.
When the function $f(x)$ is convex, we can characterize the relation
between the solution of the original system of inequalities \eqref{INEQUALITY}
and the solution of the smooth problem \eqref{minPsimu}. Import the
Theorem \ref{distance} through the following lemma for error bound \cite{M1995,M1985}.
\begin{lemma}\label{errorbound}
Suppose that the solution set $X$ of \eqref{INEQUALITY} is nonempty,
$f(x)$ be a differentiable convex function on $\rn$ and satisfy the
Slater and asymptotic constraint qualification \cite{M1995}.
Then there exist $\tilde{x} \in X$, such that
$$ \| x- \tilde{x}\| \leq C\|(f(x))_+\|,$$
where $C$ is a constant dependent on $f(x)$ \cite{M1995}.
\end{lemma}
\begin{theorem}\label{distance}
Suppose that the conditions of Lemma \ref{errorbound} are satisfied
and $\bar{x}(\mu)$ be solution to \eqref{minPsimu}.
\begin{enumerate}
\item[(a)] There exist $\tilde{x}(\mu) \in X$, such that
$$ \| \bar{x}(\mu) - \tilde{x}(\mu)\| \leq rC\sqrt{n}.$$
where $C$ is a constant and same as Lemma \ref{errorbound} and