-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmspec_functions.F90
570 lines (470 loc) · 22.4 KB
/
mspec_functions.F90
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
subroutine ecophys_para(self,parsout)
implicit none
class (type_hzg_mspec),intent(in) :: self
real(rk),dimension(29),intent(out) :: parsout
real(rk) :: mumax_incr2,b_Mumax_large2,b_Mumax_small2,a_Mumax_large2,a_Mumax_small2
real(rk) :: b_Qmin_N2,a_Qmin_N2,b_Qmax_N2,a_Qmax_N2,b_Vmax_N2,a_Vmax_N2
real(rk) :: a_affin_N2,a_affin_P2,a_carbon2
real(rk) :: b_affin_N2,b_affin_P2,b_carbon2
real(rk) :: b_Qmin_P2,a_Qmin_P2,b_Qmax_P2,a_Qmax_P2,b_Vmax_P2,a_Vmax_P2
!! Phytoplankton eco-physiological parameters
b_qmin_N2=10.0**self%b_qmin_N
b_qmax_N2=10.0**self%b_qmax_N
b_vmax_N2=10.0**self%b_vmax_N
!b_kn_N2=10.0**self%b_kn_N
b_carbon2=10.0**self%b_carbon
b_qmax_P2=10.0**self%b_qmax_P
b_qmin_P2=10.0**self%b_qmin_P
b_vmax_P2=10.0**self%b_vmax_P
!b_kn_P2=10.0**self%b_kn_P
b_affin_N2=10.0**self%b_affin_N
b_affin_P2=10.0**self%b_affin_P
!! Nonlinear mumax
b_mumax_large2=10.0**self%b_mumax_large
b_Mumax_large2=b_mumax_large2*(pi_over_six)**self%a_mumax_large
a_Mumax_large2=3*self%a_mumax_large
b_Mumax_small2=10.0**self%b_mumax_small
b_Mumax_small2=b_mumax_small2*(pi_over_six)**self%a_mumax_small
a_Mumax_small2=3*self%a_mumax_small
!! Conversion of Phytoplankton eco-physiological parameters to ESD and mole-C base --- Nitorgen
call convert_BGCparams(b_qmin_N2,self%a_qmin_N,self%a_carbon,b_carbon2,b_qmin_N2,a_qmin_N2)
call convert_BGCparams(b_qmax_N2,self%a_qmax_N,self%a_carbon,b_carbon2,b_qmax_N2,a_qmax_N2)
call convert_BGCparams(b_vmax_N2,self%a_vmax_N,self%a_carbon,b_carbon2,b_vmax_N2,a_vmax_N2)
!b_Kn_N2 = b_kn_N2*(acos(-1.0)/6.)**self%a_kn_N
!a_Kn_N2 = 3*(self%a_kn_N)
!! Nutrient affinity, m^3 mmol-C d^1
!a_affin_N2= a_Vmax_N2/a_Kn_N2 !-1
!b_affin_N2= b_Vmax_N2/b_Kn_N2 !0.4
!! Conversion of Phytoplankton eco-physiological parameters to ESD and mole-C base --- Phosphorous
call convert_BGCparams(b_qmin_P2,self%a_qmin_P,self%a_carbon,b_carbon2,b_qmin_P2,a_qmin_P2)
call convert_BGCparams(b_qmax_P2,self%a_qmax_P,self%a_carbon,b_carbon2,b_qmax_P2,a_qmax_P2)
call convert_BGCparams(b_vmax_P2,self%a_vmax_P,self%a_carbon,b_carbon2,b_vmax_P2,a_vmax_P2)
a_Qmax_P2 = 0.0_rk
!b_Kn_P2=b_kn_P2*(acos(-1.0)/6.)**self%a_kn_P
!a_Kn_P2=3*(self%a_kn_P)
call convert_BGCparams(b_affin_N2,self%a_affin_N,self%a_carbon,b_carbon2,b_affin_N2,a_affin_N2)
call convert_BGCparams(b_affin_P2,self%a_affin_P,self%a_carbon,b_carbon2,b_affin_P2,a_affin_P2)
parsout=0.0_rk
parsout(1) = b_Mumax_small2
parsout(2) = a_Mumax_small2
parsout(3) = self%mumax_incr
parsout(4) = b_Mumax_large2
parsout(5) = a_Mumax_large2
parsout(6) = b_Qmin_N2
parsout(7) = a_Qmin_N2
parsout(8) = b_Qmax_N2
parsout(9) = a_Qmax_N2
parsout(10) = b_Vmax_N2
parsout(11) = a_Vmax_N2
parsout(12) = b_affin_N2
parsout(13) = a_affin_N2
!parsout(14) = b_Kn_N2
!parsout(15) = a_Kn_N2
parsout(16) = b_Qmin_P2
parsout(17) = a_Qmin_P2
parsout(18) = b_Qmax_P2
parsout(19) = a_Qmax_P2
parsout(20) = b_Vmax_P2
parsout(21) = a_Vmax_P2
!parsout(22) = b_Kn_P2
!parsout(23) = a_Kn_P2
parsout(24) = b_affin_P2
parsout(25) = a_affin_P2
!parsout(26) = b_mumax2
!parsout(27) = a_mumax2
parsout(28) = b_carbon2
parsout(29) = a_carbon2
return
end subroutine ecophys_para
!--------------------------------------------------------------------
subroutine f_T(self,meantemp,f_T_out)
implicit none
class (type_hzg_mspec),intent(in) :: self
real(rk),dimension(2),intent(out) :: f_T_out
real(rk)::ft_Phy,ft_zoo
real(rk) :: meantemp
fT_Phy = self%Tcons_phy**((meantemp-self%T_ref)/10._rk)
fT_zoo = self%Tcons_zoo**((meantemp-self%T_ref)/10._rk)
f_T_out = (/fT_Phy,fT_zoo/)
return
end subroutine f_T
!-----------------------------------------------------------------------------
subroutine F_Co2sr(self,pCO2,f_co2)
implicit none
class (type_hzg_mspec),intent(in) :: self
real(rk),intent(in) :: pCO2
real(rk),dimension(self%phyto_num),intent(out) :: f_co2
f_co2 = (1.0_rk-exp(-self%a_co2*pco2))/(1.0_rk+self%a_star*exp(self%log_ESD-self%a_co2*pco2))
return
end subroutine F_Co2sr
!-----------------------------------------------------------------------------
subroutine f_parsr(self,Phy,Q_N,f_co2,F_T,par,mixl,f_par)
implicit none
class (type_hzg_mspec),intent(in) :: self
real(rk),dimension(self%phyto_num),intent(in):: Phy! Phytoplankton biomass concentration, mmol-C m^-3
real(rk),dimension(self%phyto_num),intent(in):: Q_N! Phytoplankton intracellular nitrogen cell quota, mol-N mol-C^-1
real(rk),dimension(self%phyto_num),intent(in):: f_co2! CO2 forcing
real(rk),dimension(2),intent(in):: F_T! Temperature dependency for phytoplankton
real(rk),intent (in)::par
real(rk),intent(in) :: mixl
real(rk),dimension(self%phyto_num),intent(out)::f_par! PAR forcing
real(rk)::k, par_w
k = self%kbg + sum(Q_N*Phy)*self%k_phyN
par_w = par/(mixl*k)*(1.0_rk-exp(-1.0_rk*k*mixl)) ! par_w: Average light intensity within mixed layer depth,
f_par = 1.0_rk-exp(-(self%a_par*par_w*Q_N)/(self%mumax*f_co2*F_T(1))) !OG
return
end subroutine f_parsr
!-----------------------------------------------------------------------------
subroutine phy_growth_rate(self,Q_N,Q_P,F_T,F_co2,F_par,P_growth_rate)
implicit none
class (type_hzg_mspec),intent(in) :: self
real(rk),dimension(self%phyto_num),intent(in) :: Q_N ! Phytoplankton intracellular nitrogen cell quota, mol-N mol-C^-1
real(rk),dimension(self%phyto_num),intent(in) :: Q_P ! Phytoplankton intracellular nitrogen cell quota, mol-N mol-C^-1
real(rk),dimension(self%phyto_num),intent(in) :: F_T ! Temperature dependency for phytoplankton
real(rk),dimension(self%phyto_num),intent(in) :: F_co2 ! CO2 forcing
real(rk),dimension(self%phyto_num),intent(in) :: F_par ! PAR forcing
real(rk),dimension(self%phyto_num),intent(out) :: P_growth_rate ! Phytoplankton growth rate, d^-1
real(rk),dimension(self%phyto_num)::f_nut,r,n,g_N,mu_max,q_Nl,q_Pl
if (self%convert_mu .eqv. .true.) then
mu_max = self%mumax*(self%QN_max/(self%QN_max-self%QN_min))*(self%QP_max/(self%QP_max-self%QP_min)) !OG
else
mu_max = self%mumax !OG
end if
q_Nl = (Q_N-self%QN_min)/Q_N !OG
q_Pl = (Q_P-self%QP_min)/Q_P !OG
select case(self%Nut_lim)
case(1)
r = q_Pl/q_Nl
n = self%n_star*(1.0_rk+q_Nl)
g_N = (r-r**(1.0_rk+n))/(1.0_rk-r**(1.0_rk+n))
f_nut = q_Nl*g_N
case(2)
f_nut = min(q_Nl,q_Pl)
case(3)
f_nut = q_Nl*q_Pl/(q_Nl+q_Pl)
case(4)
f_nut = q_Nl*q_Pl
case default
f_nut = 1.0_rk
end select
P_growth_rate = mu_max*f_nut* F_T(1)*F_co2*F_par
return
end subroutine phy_growth_rate
!------------------------------------------------------------------------------
subroutine aggr_rate(self,Phy,Q_N,D_N,aggr)! Aggregation rate, d^-1
implicit none
class (type_hzg_mspec),intent(in) :: self
real(rk),dimension(self%phyto_num),intent(in) :: Phy ! Phytoplankton biomass concentration, mmol-C m^-3
real(rk),dimension(self%phyto_num),intent(in) :: Q_N ! Phytoplankton intracellular nitrogen cell quota, mol-N mol-C^-1
real(rk),intent(in) :: D_N ! Nitrogen content of detritus concentration, mmol-N m^-3
real(rk),intent(out) :: aggr ! actual aggregation rate
aggr = self%A_star_opt*(sum(Phy*Q_N)+D_N)
return
end subroutine aggr_rate
!------------------------------------------------------------------------------
subroutine N_uptake(self,N,Q_N,F_T,par,uptake_rate_N)
implicit none
class (type_hzg_mspec),intent(in) :: self
real(rk),intent(in) :: N! Nitrogen concentration, mmol-N m^-3
real(rk),dimension(self%phyto_num),intent(in) :: Q_N! Phytoplankton intracellular nitrogen cell quota, mol-N mol-C^-1
real(rk),dimension(self%phyto_num),intent(in) :: F_T! Temperature dependency
real(rk),intent(in) :: par !PAR from data
real(rk),dimension(self%phyto_num),intent(out) :: uptake_rate_N! Phytoplankton nitrogen uptake rate, mol-N mol-C^-1 d^-1
real(rk),dimension(self%phyto_num):: nom_N,dom_N,q
uptake_rate_N(:) = 0.0_rk
if (par>=0.0_rk) then !No uptake during night
nom_N = self%vN_max*self%N_affin*N !OG
dom_N = self%vN_max+self%N_affin*N !OG
q = (self%QN_max-Q_N)/(self%QN_max-self%QN_min)
where(q .le. 0.0_rk) q = 0.0_rk
uptake_rate_N = (nom_N/dom_N)*sqrt(F_T(1))*q
end if
return
end subroutine N_uptake
!------------------------------------------------------------------------------
subroutine P_uptake(self,P, Q_P,F_T,par,uptake_rate_P)
implicit none
class (type_hzg_mspec),intent(in) :: self
real(rk),intent(in) :: P! Phsphorous concentration, mmol-P m^-3
real(rk),dimension(self%phyto_num),intent(in) :: Q_P! Phytoplankton intracellular phosphorous cell quota, mol-P mol-C^-1
real(rk),dimension(self%phyto_num),intent(in) :: F_T! Temperature dependency for phytoplankton
real(rk),intent(in) :: par !PAR from data
real(rk),dimension(self%phyto_num),intent(out) :: uptake_rate_P! Phytoplankton nutrient uptake rate, mol-P mol-C^-1 d^-1
real(rk),dimension(self%phyto_num) :: nom_P,dom_P,q
uptake_rate_P(:) = 0.0_rk
if (par>=0.0_rk) then !No uptake during night
nom_P = self%vP_max*self%P_affin*P !OG
dom_P = self%vP_max+self%P_affin*P !OG
uptake_rate_P = (nom_P/dom_P)*sqrt(F_T(1))
end if
return
end subroutine P_uptake
!------------------------------------------------------------------------------
subroutine sink_rate(self,Q_N,Q_P,mixl,sinking)
implicit none
class (type_hzg_mspec),intent(in) :: self
real(rk),dimension(self%phyto_num),intent(in) :: Q_N ! Phytoplankton intracellular nitrogen cell quota, mol-N mol-C^-1
real(rk),dimension(self%phyto_num),intent(in) :: Q_P ! Phytoplankton intracellular phosphorous cell quota, mol-P mol-C^-1
real(rk),dimension(self%phyto_num),intent(out) :: sinking ! sinking rate, d^-1
real(rk),dimension(self%phyto_num) :: physiol,qN,qP
real(rk),intent(in) :: mixl ! mixing layer depth
sinking = 0.0_rk
qN = (Q_N-self%QN_min)/(self%QN_max-self%QN_min) !OG
qP = (Q_P-self%QP_min)/(self%QP_max-self%QP_min) !OG
physiol = exp(-0.5*((qP*qN)*16.0)**2) !Todo: Why?
sinking = physiol*exp(0.5_rk*self%log_ESD)* 0.06_rk/mixl
return
end subroutine sink_rate
!------------------------------------------------------------------------------
subroutine respiration(self,N_uptake,R_N)
implicit none
class (type_hzg_mspec),intent(in) :: self
real(rk),dimension(self%phyto_num),intent(in) :: N_uptake ! Nitrogen uptake rate, mol-N mol-C^-1 d^-1
real(rk),dimension(self%phyto_num),intent(out) :: R_N ! Phytoplankton respiration rate, d^-1
R_N = N_uptake*self%mol_ratio
return
end subroutine respiration
!------------------------------------------------------------------------------
subroutine dD_N_dt(self, Phy, Q_N, D_N,aggregation,F_T,mixl,grazing_forc,dD_N_dt_out)
implicit none
!Detritus concentration over time, mmol-N m^-3 d^-1
class (type_hzg_mspec),intent(in) :: self
real(rk),dimension(self%phyto_num),intent(in) :: Phy! Phytoplankton biomass concentration, mmol-C m^-3
real(rk),dimension(self%phyto_num),intent(in) :: Q_N! Phytoplankton intracellular nitrogen cell quota, mol-N mol-C^-1
real(rk),intent(in) :: D_N! Nitrogen content of detritus concentration, mmol-N m^-3
real(rk),intent(in) :: aggregation! aggregation rate, d^-1
real(rk),dimension(2),intent(in) :: F_T! Temperature dependency
real(rk),intent(in) :: mixl
real(rk),dimension(self%phyto_num),intent(in) :: grazing_forc! Grazing forcing, mmol-C m^-3 d^-1
real(rk),intent(out) :: dD_N_dt_out
real(rk) :: mtotal
real(rk),dimension(self%phyto_num) :: source,gr,loss
mtotal = 0.0_rk
gr = (1.0_rk-self%y)*grazing_forc*Q_N
loss = (self%frac_md*self%m + aggregation)*Phy*Q_N
dD_N_dt_out = sum(loss+gr)-(self%r_dn*F_T(1)+(self%det_sink_r/mixl))*D_N
return
end subroutine dD_N_dt
!------------------------------------------------------------------------------
subroutine dD_P_dt(self,Phy,Q_P, D_P,aggregation,F_T,mixl,grazing_forc,dD_P_dt_out) !Detritus concentration over time, mmol-P m^-3 d^-1
implicit none
class (type_hzg_mspec),intent(in) :: self
real(rk),dimension(self%phyto_num),intent(in) :: Phy! Phytoplankton biomass concentration, mmol-C m^-3
real(rk),dimension(self%phyto_num),intent(in) :: Q_P! Phytoplankton intracellular phosphorous cell quota, mol-P mol-C^-1
real(rk),intent(in) :: D_P! Phosphorous content of detritus concentration, mmol-P m^-3
real(rk),intent(in) :: aggregation! aggregation rate, d^-1
real(rk),dimension(2),intent(in) :: F_T! Temperature dependency
real(rk),dimension(self%phyto_num),intent(in) :: grazing_forc! Grazing forcing, mmol-C m^-3 d^-1
real(rk),intent(in) :: mixl !mixed layer depth
real(rk),intent(out) :: dD_P_dt_out
real(rk) :: mtotal
real(rk),dimension(self%phyto_num) :: source,gr,loss
mtotal = 0.0_rk
gr = (1.0_rk-self%y)*grazing_forc*Q_P
loss = (self%frac_md*self%m + aggregation)*Phy*Q_P
dD_P_dt_out=sum(loss+gr)-(self%r_dn*F_T(1)+(self%det_sink_r/mixl))*D_P
return
end subroutine dD_P_dt
!------------------------------------------------------------------------------
subroutine dN_dt(self,N_uptake, Phy, D_N,grazing_forc,Q_N,F_T,N,dN_dt_out) ! Change of nitrogen concentration over time, mmol-N m^-3 d^-1
implicit none
class (type_hzg_mspec),intent(in) :: self
real(rk),dimension(self%phyto_num),intent(in) :: N_uptake! Phytoplankton nitorgen uptake rate, mol-N mol-C^-1 d^-1
real(rk),dimension(self%phyto_num),intent(in) :: Phy! Phytoplankton biomass concentration, mmol-C m^-3
real(rk),intent(in) :: D_N! Nitrogen content of detritus concentration, mmol-N m^-3
real(rk),dimension(self%phyto_num),intent(in) :: grazing_forc! Grazing forcing, mmol-C m^-3 d^-1
real(rk),dimension(self%phyto_num),intent(in) :: Q_N! Phytoplankton intracellular nitrogen cell quota, mol-N mol-C^1
real(rk),dimension(2),intent(in) :: F_T! Temperature dependency
real(rk),intent(in) :: N! Nitrogen concentration, mmol-N m^-3
real(rk),intent(out) :: dN_dt_out! Nitrogen concentration, mmol-N m^-3
real(rk),dimension(self%phyto_num) :: up
up = N_uptake*Phy
dN_dt_out = self%r_dn*D_N*F_T(1)-sum(up)!+sum(gr(:))
return
end subroutine dN_dt
!------------------------------------------------------------------------------
subroutine dP_dt(self,P_uptake, Phy, D_P,grazing_forc,Q_P,F_T,P,dP_dt_out) ! Change of nutrient concentration over time
implicit none
class (type_hzg_mspec),intent(in) :: self
real(rk),dimension(self%phyto_num),intent(in) :: P_uptake! Phytoplankton phosphorous uptake rate, mol-P mol-C^-1 d^-1
real(rk),dimension(self%phyto_num),intent(in) :: Phy! Phytoplankton biomass concentration, mmol-C m^-3
real(rk),intent(in) :: D_P! Phosphorous content of detritus concentration, mmol-P m^-3
real(rk),dimension(self%phyto_num),intent(in) :: grazing_forc! Grazing forcing, mmol-C m^-3 d^-1
real(rk),dimension(self%phyto_num),intent(in) :: Q_P! Phytoplankton intracellular phosphorous cell quota, mol-P mol-C^-1
real(rk),dimension(2),intent(in) :: F_T! Temperature dependency
real(rk),intent(in) :: P! Phosphorous concentration, mmol-P m^-3
real(rk),dimension(self%phyto_num) :: up
real(rk),intent(out) :: dP_dt_out! Nitrogen concentration, mmol-N m^-3
up = P_uptake*Phy
dP_dt_out = self%r_dn*D_P*F_T(1)-sum(up)
return
end subroutine dP_dt
!------------------------------------------------------------------------------
subroutine Rel_growth_rate_sr(self,Phy,aggregation,growth_rate,grazing_forc,respiration,sinking,rel_growth_rate)
implicit none
class (type_hzg_mspec),intent(in) :: self
real(rk),dimension(self%phyto_num),intent(in) :: Phy! Phytoplankton biomass concentration, mmol-C m^-3
real(rk),dimension(self%phyto_num),intent(out) :: rel_growth_rate
real(rk),intent(in) :: aggregation! Aggregation rate, d^-1
real(rk),dimension(self%phyto_num),intent(in) :: growth_rate! Phytoplankton growth rate, d^-1
real(rk),dimension(self%phyto_num),intent(in) :: grazing_forc! Grazing forcing, mmol-C m^-3 d^-1
real(rk),dimension(self%phyto_num),intent(in) :: respiration! Phytoplankton respiration rate, d^-1
real(rk),dimension(self%phyto_num),intent(in) :: sinking! Phytoplankton sinking rate, d^-1
rel_growth_rate = growth_rate - respiration - sinking - self%m - aggregation - grazing_forc/(eps+Phy)
return
end subroutine Rel_growth_rate_sr
!------------------------------------------------------------------------------
real(rk) function chl_a(self,Phy,Q_N,par)
implicit none
class (type_hzg_mspec),intent(in) :: self
real(rk),intent(in) :: par
real(rk),dimension(self%phyto_num),intent(in) :: Phy! Phytoplankton biomass concentration, mmol-C m^-3
real(rk),dimension(self%phyto_num),intent(in) :: Q_N! Phytoplankton intracellular nitrogen cell quota, mol-N mol-C^1
real(rk) :: phyto_conc_tot
phyto_conc_tot = sum(Phy*Q_N) !* (1._rk-par/self%I_opt) !OG
chl_a=phyto_conc_tot*self%chla_to_T_PhyN
return
end function chl_a
!-----------------------------------------------------------------
subroutine mean_cell_size(self,Phy,mean)
implicit none
class (type_hzg_mspec),intent(in) :: self
real(rk),dimension(self%phyto_num), intent(in) ::Phy
real(rk),dimension(self%phyto_num) :: mean_nom
real(rk) :: Phy_tot
real(rk), dimension(self%phyto_num) :: Phy_tmp
integer :: i
real(rk),intent(out) :: mean
! :param Phy: Phytoplankton biomass concentration, mmol-C m^-3
! :return: community mean cell size, log_e ESD (mu m)
! """
mean_nom=0.0_rk
mean=0.0_rk
Phy_tmp=Phy
do i=1,self%phyto_num
!Larger Diatoms (L>3.5) were counted seperately
if(self%log_ESD(i)<self%log_ESD_crit) then! .and. self%log_ESD(i)/= 2.5) then
!Error in data for nan IV (2.6)
mean_nom(i)=Phy(i)*exp(self%log_ESD(i))
!else if (self%log_ESD(i)==self%log_ESD_crit) then
! mean_nom(i)=0.5*Phy(i)*self%log_ESD(i)
! Phy_tmp(i)=0.5*Phy_tmp(i)
else
Phy_tmp(i)=0.0_rk
end if
end do
if (sum(Phy_tmp) /= 0.0_rk) mean = log(sum(mean_nom)/sum(Phy_tmp))
return
end subroutine mean_cell_size
!------------------------------------------------------------------------------
real(rk) function size_diversity(self,Phy,mean)
implicit none
class (type_hzg_mspec),intent(in) :: self
real(rk),dimension(self%phyto_num),intent(in) :: Phy! Phytoplankton biomass concentration, mmol-C m^-3
! :return: community size diversity, log_e ESD (mu m)^2
integer::i
real(rk),dimension(self%phyto_num) :: div_nom
real(rk) :: mean
!allocate(div_nom(self%phyto_num))
do i=1,self%phyto_num
div_nom(i)=(self%log_ESD(i)-mean)**2*Phy(i)
end do
size_diversity=sum(div_nom)/sum(Phy)
return
end function size_diversity
!------------------------------------------------------------------------------
real(rk) function allometries_esd(beta,alpha,s)
real(rk), intent(in) :: beta! Interception for trait
real(rk), intent(in) :: alpha! Size scaling exponent for trait
real(rk), intent(in) :: s! Equivalent spherical diamater, mu m
! :return: trait=exp^(log_e(beta)+alpha*log_e(ESD))
allometries_esd =beta*exp(alpha*s)
return
end function allometries_esd
!------------------------------------------------------------------------------
subroutine bgc_parameters(self,s, bgc_params)
implicit none! :return: Phytoplankton eco-physiological traits
class (type_hzg_mspec),intent(in) :: self
real(rk),intent (in) :: s! Equivalent spherical diamater, mu m
real(rk),dimension(11),intent (out)::bgc_params
real(rk) :: mu_max, Qmin_N, Qmax_N, vmax_N, Kn_N, affinity_N
real(rk) :: Qmin_P, Qmax_P, vmax_P, Kn_P, affinity_P,tmp
!! Nonlinear mumax
mu_max=self%pars(3)*min(self%pars(1)*exp(s*self%pars(2)), self%pars(4)*exp(s*self%pars(5)))
! tmp=self%pars(1)*exp(2.29_rk*self%pars(2))
! mu_max=self%pars(3)*min(self%pars(1)*exp(s*self%pars(2)),tmp*exp((s-tmp)*self%pars(5)))
!linear mumax
!mu_max=allometries_esd(self%pars(26),self%pars(27),s)
Qmin_N=allometries_esd(self%pars(6),self%pars(7),s)
Qmax_N=allometries_esd(self%pars(8),self%pars(9),s)
vmax_N =allometries_esd(self%pars(10),self%pars(11),s)
!if (log(s)<2.3_rk) then
! affinity_N=self%pars(12)*dexp(self%pars(13)*2.3_rk)
!else
!end if
!Kn_N =allometries_esd(self%pars(14),self%pars(15),s)
affinity_N=allometries_esd(self%pars(12),self%pars(13),s)
Qmin_P=allometries_esd(self%pars(16),self%pars(17),s)
Qmax_P=allometries_esd(self%pars(18),self%pars(19),s)
vmax_P =allometries_esd(self%pars(20),self%pars(21),s)
!Kn_P =allometries_esd(self%pars(22),self%pars(23),s)
affinity_P=allometries_esd(self%pars(24),self%pars(25),s)
bgc_params(1) = mu_max
bgc_params(2) = Qmin_N
bgc_params(3) = Qmax_N
bgc_params(4) = vmax_N
bgc_params(5) = 0.0!Kn_N
bgc_params(6) = affinity_N
bgc_params(7) = Qmin_P
bgc_params(8) = Qmax_P
bgc_params(9) = vmax_P
bgc_params(10) = 0.0!Kn_P
bgc_params(11) = affinity_P
return
end subroutine bgc_parameters
!------------------------------------------------------------------------------
subroutine convert_BGCparams(beta,alpha,a_carbon,b_carbon,ESD_beta,ESD_alpha)
implicit none
real(rk),intent(in) :: beta ! :param beta_params: Interception for trait
real(rk), intent(in) :: alpha ! :param alpha_params: Size scaling exponent for trait
real(rk), intent(in) :: a_carbon! size scaling exponent for cell carbon content
real(rk), intent(in) :: b_carbon! Interception for cell carbon content
real(rk), intent(out) :: ESD_beta,ESD_alpha
real(rk) :: beta_cell_moleC
beta_cell_moleC=(beta/b_carbon)*12._rk*10_rk**6! #moleX/moleC
ESD_beta=beta_cell_moleC*pi_over_six**(alpha-a_carbon)
ESD_alpha=3.0_rk*(alpha-a_carbon)
return
end subroutine convert_BGCparams
!------------------------------------------------------------------------------
!Umwandlsung von integer in Character Typ-----------------------------------
character*3 function int2char(i)
implicit none
integer, intent(in) :: i
write(int2char,'(i3)') i
int2char = adjustl(int2char)
end Function int2char
!------------------------------------------------------------------------------
subroutine make_phyto_allometries(self)
!! Calculate and store all allometries for phytoplankton.
!! This routine makes the calculations more efficient than the original code.
!! OG 01.05.2019
implicit none
class (type_hzg_mspec), intent(inout) :: self
real(rk), dimension(11) :: bgc_params
integer :: i
do i=1,self%phyto_num
call bgc_parameters(self,self%log_ESD(i),bgc_params)
self%mumax(i) = bgc_params(1)
self%N_affin(i) = bgc_params(6)
self%P_affin(i) = bgc_params(11)
self%QN_min(i) = bgc_params(2)
self%QN_max(i) = bgc_params(3)
self%QP_min(i) = bgc_params(7)
self%QP_max(i) = bgc_params(8)
self%vN_max(i) = bgc_params(4)
self%vP_max(i) = bgc_params(9)
end do
return
end subroutine make_phyto_allometries
!-------------