-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathspd_map.m
39 lines (34 loc) · 1008 Bytes
/
spd_map.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
function [y,params] = spd_map(params)
%SPD_MAP optimizes 2-D signals of blood flow map using Maximum A Posterior.
%Steepest descent optimiation is used.
%
% Optimization of convolution model with dictionary induced prior using
% steepest descent
%
% INPUT:
% PARAMS - structure of parameters (for detailed field definition,
% see spd.m)
%
% OUTPUT:
% Y - Estimated perfusion map [H x W]
% PARAMS - structure of parameters with fields f,J,prior,nz updated
%
%
% SPD_MAP calls two functions: SPD_PRIOR and SPD_SD for prior estimation
% and steepest descent optimiztion
%
%
% Ruogu Fang 4/10/2014
% Advanced Multimedia Processing (AMP) Lab
% Department of Electrical and Computer Engineering
% Cornell University
params.f = params.x; % copy the noisy initial image to f
% Iteration of two steps
for i = 1 : params.round
params = spd_prior(params);
params = spd_sd(params);
end
% Output of restored perfusion map
params = spd_prior(params);
y = params.prior;
end