-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathself_weight.py
245 lines (220 loc) · 8.96 KB
/
self_weight.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
import copy
from transformers import Trainer, GPTQConfig, deepspeed, DataCollatorWithPadding, AdamW, get_scheduler
from dataclasses import dataclass, field
from typing import Dict, Optional, List
import transformers
import torch
import random
import numpy as np
from src.utils.utils import derive_num_from_answer, format_ground_truth_answer, derive_ratings_from_answer
from src.utils.constants import COT_EXAMPLES
from src.model.trainLM import SupervisedDataset, trainL, build_model, make_supervised_data_module
from src.data.filter_data import get_data_weight
from src.model.filterLM import FilterModel
from src.utils.evaluation import test_loss, test_batch_loss, evalauation
from datasets import load_dataset
import jsonlines
from tqdm import tqdm
import time
import os
import sys
from accelerate import Accelerator
from accelerate.logging import get_logger
from accelerate.utils import set_seed, gather_object
import logging
import tqdm
from torch.utils.data import Dataset, DataLoader
from peft import PeftModel
import warnings
import json
warnings.filterwarnings("ignore")
os.environ['CUDA_LAUNCH_BLOCKING'] = "1"
logging.basicConfig(level=logging.INFO)
logger = get_logger(__name__)
device = None
@dataclass
class ModelArguments:
model_name_or_path: Optional[str] = field(default="")
filter_base_model_path: str = field(default="")
vocab_size: int = field(default=0)
peft_model_path: str = field(default="")
@dataclass
class DataArguments:
data_path: str = field(
default="", metadata={"help": "Path to the training data."}
)
eval_data_path: str = field(
default=None, metadata={"help": "Path to the evaluation data."}
)
valid_data_path: str = field(
default=None, metadata={"help": "valid data path, name:split"}
)
temp_data_path: str = field(
default=None
)
dataset_name: str = field(
default=None
)
data_filter_mode: str = field(
default="Consistency", metadata={"help": "Consistency, Groundtruth, Entropy, Weighted"}
)
lazy_preprocess: bool = False
uncertainty_th: float = field(
default=1.0
)
@dataclass
class TrainingArguments(transformers.TrainingArguments):
cache_dir: Optional[str] = field(default=None)
optim: str = field(default="adamw_torch")
model_max_length: int = field(
default=800,
metadata={
"help": "Maximum sequence length. Sequences will be right padded (and possibly truncated)."
},
)
use_lora: bool = False
filter_training_batch_size: int = field(default=8)
valid_batch_size: int = field(default=16)
filter_training_epochs: int = field(default=10)
filter_model_lr: float = field(
default=1e-3
)
@dataclass
class LoraArguments:
lora_r: int = 64
lora_alpha: int = 16
lora_dropout: float = 0.05
lora_target_modules: List[str] = field(
default_factory=lambda: ["c_attn", "c_proj", "w1", "w2"]
)
lora_weight_path: str = ""
lora_bias: str = "none"
q_lora: bool = False
def load_train_data(tokenizer: transformers.PreTrainedTokenizer, data_args, max_len, weights):
train_data = []
cand_num = 0
with jsonlines.open(data_args.data_path, "r") as reader:
for idx, obj in enumerate(reader):
question = obj["question"]
candidates = obj["candidates"]
cands_weight = weights[idx]
assert len(candidates) == len(cands_weight)
cand_num = len(candidates)
for i in range(len(candidates)):
train_data.append({
"question": question,
"answer": candidates[i],
"weight": cands_weight[i]
})
# if data_args.dataset_name == "aqua_rat":
# train_data = train_data[:2000*15]
train_dataset = SupervisedDataset(
train_data,
tokenizer=tokenizer,
max_len=max_len,
data_processor=lambda x: "Q: " + x["question"] + "\n" + "A: " + tokenizer.eos_token + x["answer"],
weight_extractor=lambda x: x["weight"]
)
return train_dataset, cand_num
def self_weight():
parser = transformers.HfArgumentParser(
(ModelArguments, DataArguments, TrainingArguments, LoraArguments)
)
(
model_args,
data_args,
training_args,
lora_args,
) = parser.parse_args_into_dataclasses()
accelerator = Accelerator()
device = accelerator.device
logger.info('Loading causal model...')
modelL = transformers.AutoModelForCausalLM.from_pretrained(
model_args.model_name_or_path,
torch_dtype=torch.bfloat16
)
if len(model_args.peft_model_path) > 0:
logger.info("loading peft weights from{}".format(model_args.peft_model_path))
modelL = PeftModel.from_pretrained(modelL, model_args.peft_model_path)
modelL.merge_and_unload()
tokenizerL = transformers.AutoTokenizer.from_pretrained(
model_args.model_name_or_path,
model_max_length=training_args.model_max_length,
use_fast=False,
padding_side = "left")
tokenizerL.pad_token_id = tokenizerL.eos_token_id
logger.info('Loading training&validation data...')
dump_file_name = ""
data_weights = get_data_weight(data_args, model=None)
train_dataset, cand_num = load_train_data(tokenizerL, data_args, training_args.model_max_length, data_weights)
train_dataset = train_dataset.sources
prompts = [
COT_EXAMPLES["self"] + "Q: {}\n".format(x["question"]) + "A: {}\n".format(x["answer"]) + "Score: " for x in train_dataset
]
dump_file_name = "self_weight.json"
tokenizerL.padding_side="left"
def prepare_prompts(prompts, tokenizer, batch_size=16):
batches=[prompts[i:i + batch_size] for i in range(0, len(prompts), batch_size)]
batches_tok=[]
tokenizer.padding_side="left"
for prompt_batch in batches:
batches_tok.append(
tokenizer(
prompt_batch,
return_tensors="pt",
padding='longest',
truncation=True,
max_length=training_args.model_max_length,
add_special_tokens=True).to(device)
)
return batches_tok
propmt_length = len(prompts)
modelL.eval()
modelL.to(device)
accelerator.wait_for_everyone()
logger.info('Start Loss computing...')
with accelerator.split_between_processes(prompts) as prompts:
results=dict(outputs=[], num_tokens=0)
# have each GPU do inference in batches
prompt_batches=prepare_prompts(prompts, tokenizerL, batch_size=training_args.per_device_eval_batch_size)
pbar = tqdm.tqdm(total=len(prompt_batches), disable=(not accelerator.is_local_main_process))
for prompts_tokenized in prompt_batches:
with torch.no_grad():
outputs_tokenized=modelL.generate(**prompts_tokenized, max_length=training_args.model_max_length, num_return_sequences=1, temperature=0.7, pad_token_id=tokenizerL.eos_token_id)
# remove prompt from gen. tokens
outputs_tokenized=[ tok_out[len(tok_in):]
for tok_in, tok_out in zip(prompts_tokenized["input_ids"], outputs_tokenized) ]
# count and decode gen. tokens
num_tokens=sum([ len(t) for t in outputs_tokenized ])
outputs=tokenizerL.batch_decode(outputs_tokenized)
# store in results{} to be gathered by accelerate
results["outputs"].extend(outputs)
results["num_tokens"] += num_tokens
if accelerator.is_local_main_process:
pbar.update(1)
torch.cuda.empty_cache()
results=[ results ] # transform to list, otherwise gather_object() will not collect correctly
results_gathered=gather_object(results)
if accelerator.is_main_process:
total_results = []
total_results = []
for r in results_gathered:
total_results += r["outputs"]
total_results = [answer.split(tokenizerL.eos_token)[0] if tokenizerL.eos_token in answer else answer for answer in total_results]
if len(total_results) > propmt_length:
total_results = total_results[:propmt_length]
total_results = [derive_ratings_from_answer(x) for x in total_results]
total_results = [min(max(0, float(x)), 10) if x is not None else 0 for x in total_results]
logger.info("results length is {}".format(len(total_results)))
total_results = [total_results[i:i+cand_num] for i in range(0, len(total_results), cand_num)]
save_path = os.path.join(data_args.temp_data_path, data_args.dataset_name.replace("/", "_"))
os.makedirs(save_path, exist_ok=True)
with open(os.path.join(save_path, dump_file_name), "w", encoding="utf8") as f:
json.dump(total_results,f)
if __name__ == "__main__":
seed = 114514
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
np.random.seed(seed)
random.seed(seed)
self_weight()