-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrecord_weights.py
177 lines (158 loc) · 5.54 KB
/
record_weights.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
import copy
from transformers import Trainer, GPTQConfig, deepspeed, DataCollatorWithPadding, AdamW, get_scheduler
from dataclasses import dataclass, field
from typing import Dict, Optional, List
import transformers
import torch
import random
import numpy as np
from src.utils.utils import derive_num_from_answer, format_ground_truth_answer
from src.utils.constants import COT_EXAMPLES
from src.model.trainLM import SupervisedDataset, trainL, build_model, make_supervised_data_module
from src.data.filter_data import get_data_weight
from src.model.filterLM import FilterModel
from src.utils.evaluation import test_loss, test_batch_loss, evalauation
from datasets import load_dataset
import jsonlines
from tqdm import tqdm
import time
import os
import sys
from accelerate import Accelerator
from accelerate.logging import get_logger
from accelerate.utils import set_seed, gather_object
import logging
import tqdm
from torch.utils.data import Dataset, DataLoader
from peft import PeftModel
import warnings
import json
from accelerate import DistributedDataParallelKwargs
import random
'''
This script is to compute weights for generated data using inference of modelF
'''
warnings.filterwarnings("ignore")
os.environ['CUDA_LAUNCH_BLOCKING'] = "1"
logging.basicConfig(level=logging.INFO)
logger = get_logger(__name__)
device = None
@dataclass
class ModelArguments:
model_name_or_path: Optional[str] = field(default="")
filter_base_model_path: str = field(default="")
vocab_size: int = field(default=0)
peft_model_path: str = field(default="")
mlp_store_path: str = field(default="") #add
@dataclass
class DataArguments:
data_path: str = field(
default="", metadata={"help": "Path to the training data."}
)
eval_data_path: str = field(
default=None, metadata={"help": "Path to the evaluation data."}
)
valid_data_path: str = field(
default=None, metadata={"help": "valid data path, name:split"}
)
temp_data_path: str = field(
default=None
)
dataset_name: str = field(
default=None
)
data_filter_mode: str = field(
default="Consistency", metadata={"help": "Consistency, Groundtruth, Entropy, Weighted"}
)
lazy_preprocess: bool = False
uncertainty_th: float = field(
default=1.0
)
@dataclass
class TrainingArguments(transformers.TrainingArguments):
cache_dir: Optional[str] = field(default=None)
optim: str = field(default="adamw_torch")
model_max_length: int = field(
default=800,
metadata={
"help": "Maximum sequence length. Sequences will be right padded (and possibly truncated)."
},
)
use_lora: bool = False
filter_training_batch_size: int = field(default=8)
valid_batch_size: int = field(default=16)
filter_training_epochs: int = field(default=10)
filter_model_lr: float = field(
default=1e-3
)
@dataclass
class LoraArguments:
lora_r: int = 64
lora_alpha: int = 16
lora_dropout: float = 0.05
lora_target_modules: List[str] = field(
default_factory=lambda: ["c_attn", "c_proj", "w1", "w2"]
)
lora_weight_path: str = ""
lora_bias: str = "none"
q_lora: bool = False
def load_train_data(tokenizer: transformers.PreTrainedTokenizer, data_args, max_len, weights):
train_data = []
cand_num = 0
with jsonlines.open(data_args.data_path, "r") as reader:
for idx, obj in enumerate(reader):
question = obj["question"]
candidates = obj["candidates"]
cands_weight = weights[idx]
assert len(candidates) == len(cands_weight)
cand_num = len(candidates)
for i in range(len(candidates)):
train_data.append({
"question": question,
"answer": candidates[i],
"weight": cands_weight[i]
})
train_dataset = SupervisedDataset(
train_data,
tokenizer=tokenizer,
max_len=max_len,
data_processor=lambda x: "Q: " + x["question"] + "\n" + "A: " + tokenizer.eos_token + x["answer"],
weight_extractor=lambda x: x["weight"]
)
return train_dataset, cand_num
def record_weight():
parser = transformers.HfArgumentParser(
(ModelArguments, DataArguments, TrainingArguments, LoraArguments)
)
(
model_args,
data_args,
training_args,
lora_args,
) = parser.parse_args_into_dataclasses()
# no filter version
with open(os.path.join(data_args.temp_data_path, data_args.dataset_name.replace("/","_"), "valid_loss.json"), "r", encoding="utf8") as f:
valid_losses = json.load(f)
with open(os.path.join(data_args.temp_data_path, data_args.dataset_name.replace("/","_"), "train_loss.json"), "r", encoding="utf8") as f:
train_losses = json.load(f)
avg_valid_loss = sum(valid_losses) / len(valid_losses)
weights = []
for cand_losses in train_losses:
cand_weight = []
for loss in cand_losses:
if loss == 0:
w = 0
else:
w = min(2, max(0, avg_valid_loss/loss if (loss > 0 and avg_valid_loss > 0) else 0))
cand_weight.append(w)
weights.append(cand_weight)
with open(os.path.join(data_args.temp_data_path, data_args.dataset_name.replace("/","_"), "weight.json"), "w", encoding="utf8") as f:
json.dump(weights,f)
return
if __name__ == "__main__":
seed = int(time.time())
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
np.random.seed(seed)
random.seed(seed)
record_weight()